in

Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions

  • Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 1–8 (2020).

    Article 

    Google Scholar 

  • Sumaila, U. R. et al. Benefits of the paris agreement to ocean life, economies, and people. Sci. Adv. 5, 1–10 (2019).

    Article 

    Google Scholar 

  • Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619 (2019).

    Google Scholar 

  • Finkbeiner, E. M. The role of diversification in dynamic small-scale fisheries: Lessons from Baja California Sur. Mexico. Glob. Environ. Chang. 32, 139–152 (2015).

    Article 

    Google Scholar 

  • Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).

    Article 

    Google Scholar 

  • IPCC. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. (2007).

  • Johnson, J. E. & Welch, D. J. Climate change implications for Torres Strait fisheries: Assessing vulnerability to inform adaptation. Clim. Change 135, 611–624 (2016).

    ADS 
    Article 

    Google Scholar 

  • IPCC. Annex I: Glossary. in IPCC special report on the ocean and cryosphere in a changing climate e [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)] 677–702 (Cambridge University Press, 2019). https://doi.org/10.1017/9781009157964.010

  • Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).

    ADS 
    Article 

    Google Scholar 

  • Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 80(279), 860 (1998).

    ADS 
    Article 

    Google Scholar 

  • Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Rashid Sumaila, U. Projected change in global fisheries revenues under climate change. Sci. Rep. 6(6), 13 (2016).

    Google Scholar 

  • Heck, N. et al. Fisheries at risk: Vulnerability of fisheries to climate change (Nat. Conserv. Tech. Rep, 2020).

    Google Scholar 

  • Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).

    Article 

    Google Scholar 

  • DuFour, M. R. et al. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere 6(12), 1 (2015).

    Article 

    Google Scholar 

  • Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. U. S. A. 110, 2076–2081 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bahri, T. et al. Adaptive management of fisheries in response to climate change. FAO Fisheries and Aquaculture Technical Paper 667, (FAO, 2021).

  • Barker, M. J. & Schluessel, V. Managing global shark fisheries: Suggestions for prioritizing management strategies. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 325–347 (2005).

    Article 

    Google Scholar 

  • Fletcher, W. J. F. & Fletcher, W. J. The application of qualitative risk assessment methodology to prioritize issues for fisheries management. ICES J. Mar. Sci. 62, 1576–1587 (2005).

    Article 

    Google Scholar 

  • Cheung, W. W. L. The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92, 790–803 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS ONE 8(9), e74321 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Colburn, L. L. et al. Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy 74, 323–333 (2016).

    Article 

    Google Scholar 

  • Pinnegar, J. K. et al. Assessing vulnerability and adaptive capacity of the fisheries sector in Dominica: Long-term climate change and catastrophic hurricanes. ICES J. Mar. Sci. 76, 1353–1367 (2019).

    Google Scholar 

  • Aragão, G. M. et al. The importance of regional differences in vulnerability to climate change for demersal fisheries. ICES J. Mar. Sci. 1, 1–13 (2021).

    Google Scholar 

  • Payne, M. R., Kudahl, M., Engelhard, G. H., Peck, M. A. & Pinnegar, J. K. Climate risk to European fisheries and coastal communities. Proc. Natl. Acad. Sci. U. S. A. 118, e2018086118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baptista, V., Silva, P. L., Relvas, P., Teodósio, M. A. & Leitão, F. Sea surface temperature variability along the Portuguese coast since 1950. Int. J. Climatol. 38, 1145–1160 (2018).

    Article 

    Google Scholar 

  • Leitão, F. et al. (2019) A 60-year time series analyses of the upwelling along the Portuguese coast. Water 11(11), 1285 (2019).

    Article 

    Google Scholar 

  • Leitão, F., Relvas, P., Cánovas, F., Baptista, V. & Teodósio, A. Northerly wind trends along the Portuguese marine coast since 1950. Theor. Appl. Climatol. 137(1), 19 (2018).

    Google Scholar 

  • Bueno-Pardo, J. et al. Trends and drivers of marine fish landings in Portugal since its entrance in the European Union. ICES J. Mar. Sci. 77, 988–1001 (2020).

    Article 

    Google Scholar 

  • Leitão, F., Maharaj, R. R., Vieira, V. M. N. C. S., Teodósio, A. & Cheung, W. W. L. The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1351–1359 (2018).

    Article 

    Google Scholar 

  • Leitão, F., Alms, V. & Erzini, K. A multi-model approach to evaluate the role of environmental variability and fishing pressure in sardine fisheries. J. Mar. Syst. 139, 128–138 (2014).

    Article 

    Google Scholar 

  • Ullah, H., Leitão, F., Baptista, V. & Chícharo, L. An analysis of the impacts of climatic variability and hydrology on the coastal fisheries, Engraulis encrasicolus and Sepia officinalis, of Portugal. Ecohydrol. Hydrobiol. 12, 337–352 (2012).

    Article 

    Google Scholar 

  • EUMOFA. The EU Fish Market – Highlights the EU in the world market supply consumption import-export landings in the EU aquaculture (2021) https://doi.org/10.2771/563899

  • DGPM. Relatório de Monitorização da Estratégia Nacional para o Mar 2013–2020, Documento de Suporte às Políticas do Mar. (2020).

  • Almeida, C., Karadzic, V. & Vaz, S. The seafood market in Portugal: Driving forces and consequences. Mar. Policy 61, 87–94 (2015).

    Article 

    Google Scholar 

  • Pita, C. & Gaspar, M. (2020) Small-Scale Fisheries in Portugal: Current Situation, Challenges and Opportunities for the Future. In Small-Scale Fisheries in Europe: Status, Resilience and Governance. Springer, Cham 283–305https://doi.org/10.1007/978-3-030-37371-9_14

  • Baeta, F., José Costa, M. & Cabral, H. Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish. Res. 97, 216–222 (2009).

    Article 

    Google Scholar 

  • Leitão, F. Landing profiles of Portuguese fisheries: Assessing the state of stocks. Fish. Manag. Ecol. 22, 152–163 (2015).

    Article 

    Google Scholar 

  • Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).

    Article 

    Google Scholar 

  • Bueno-Pardo, J. et al. Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Sci. Rep. 11, 2958 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Szynaka, M. J., Erzini, K., Gonçalves, J. M. S. & Campos, A. Identifying métiers using landings profiles: An octopus-driven multi-gear coastal fleet. J. Mar. Sci. Eng. 9, 1022 (2021).

    Article 

    Google Scholar 

  • Gamito, R., Teixeira, C. M., Costa, M. J. & Cabral, H. N. Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg. Environ. Chang. 13, 413–421 (2013).

    Article 

    Google Scholar 

  • Leitão, F., Baptista, V., Zeller, D. & Erzini, K. Reconstructed catches and trends for mainland Portugal fisheries between 1938 and 2009: Implications for sustainability, domestic fish supply and imports. Fish. Res. 155, 33–50 (2014).

    Article 

    Google Scholar 

  • Teixeira, C. M. et al. Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg. Environ. Chang. 14, 657–669 (2014).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 3–900051–07–0 (2020).

  • Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685 (2003).

    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N. & Smith, G. M. (2007) Analysing Ecological Data. https://doi.org/10.1007/978-0-387-45972-1

  • Anderson, M., Gorley, R. & Clarke, K. PERMANOVA for PRIMER: Guide to software and statistical methods. (PRIMER-E Ltd., 2008).

  • Heppell, S. S., Heppell, S. a, Read, A. J. & Crowder, L. B. Effects of fishing on long-lived marine organisms. In Marine conservation biology: The science of maintaining the sea’s biodiversity (eds. Norse, E. & Crowder, L.) 211–231 (Island Press, 2005).

  • Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean sea based on fishers’ perceptions. PLoS ONE 6, e21818 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rolland, V., Barbraud, C. & Weimerskirch, H. Combined effects of fisheries and climate on a migratory long-lived marine predator. J. Appl. Ecol. 45, 4–13 (2008).

    Article 

    Google Scholar 

  • Alves, L. M. F., Correia, J. P. S., Lemos, M. F. L., Novais, S. C. & Cabral, H. Assessment of trends in the Portuguese elasmobranch commercial landings over three decades (1986–2017). Fish. Res. 230, 105648 (2020).

    Article 

    Google Scholar 

  • Correia, J. P., Morgado, F., Erzini, K. & Soares, A. M. V. M. Elasmobranch landings for the Portuguese commercial fishery from 1986 to 2009. Arquipel. Life Mar. Sci. 33, 81–109 (2016).

    Google Scholar 

  • Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’ phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).

    Article 

    Google Scholar 

  • Moura, T. et al. Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Mar. Environ. Res. 160, 105044 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martins, M. M., Skagen, D., Marques, V., Zwolinski, J. & Silva, A. Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci. Mar. 77, 551–563 (2013).

    Article 

    Google Scholar 

  • Bordalo-Machado, P. & Figueiredo, I. The fishery for black scabbardfish (Aphanopus carbo Lowe, 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish. 19, 49–67 (2009).

    Article 

    Google Scholar 

  • Gordo, L. S. Black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern Northeast Atlantic: Considerations on its fishery. Sci. Mar. 73, 11–16 (2009).

    Article 

    Google Scholar 

  • Campos, A., Fonseca, P., Fonseca, T. & Parente, J. Definition of fleet components in the Portuguese bottom trawl fishery. Fish. Res. 83, 185–191 (2007).

    Article 

    Google Scholar 

  • Bueno-Pardo, J. et al. Deep-sea crustacean trawling fisheries in Portugal: Quantification of effort and assessment of landings per unit effort using a Vessel Monitoring System (VMS). Sci. Rep. 7, 1–10 (2017).

    ADS 
    Article 

    Google Scholar 

  • Gamito, R., Pita, C., Teixeira, C., Costa, M. J. & Cabral, H. N. Trends in landings and vulnerability to climate change in different fleet components in the Portuguese coast. Fish. Res. 181, 93–101 (2016).

    Article 

    Google Scholar 

  • García-Seoane, E., Marques, V., Silva, A. & Angélico, M. M. Spatial and temporal variation in pelagic community of the western and southern Iberian Atlantic waters. Estuar. Coast. Shelf Sci. 221, 147–155 (2019).

    ADS 
    Article 

    Google Scholar 

  • Vinagre, C., Duarte, F., Cabral, H. & Jose, M. Impact of climate warming upon the fish assemblages of the Portuguese coast under different scenarios. Reg. Environ. Change 11(4), 779. https://doi.org/10.1007/s10113-011-0215-z (2011).

    Article 

    Google Scholar 

  • Goulart, P., Veiga, F. J. & Grilo, C. The evolution of fisheries in Portugal: A methodological reappraisal with insights from economics. Fish. Res. 199, 76–80 (2018).

    Article 

    Google Scholar 

  • Pita, C., Pereira, J., Lourenço, S., Sonderblohm, C. & Pierce, G. J. (2015) The Traditional Small-Scale Octopus Fishery in Portugal: Framing Its Governability. 117–132. https://doi.org/10.1007/978-3-319-17034-3_7

  • Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).

    Article 

    Google Scholar 

  • Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).

    ADS 
    Article 

    Google Scholar 

  • Sbrana, M. et al. Spatiotemporal abundance pattern of deep-water rose shrimp, parapenaeus longirostris, and Norway lobster, nephrops norvegicus, in european mediterranean waters. Sci. Mar. 83, 71–80 (2019).

    Article 

    Google Scholar 

  • Quattrocchi, F., Fiorentino, F., Lauria, V. & Garofalo, G. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158, 101871 (2020).

    Article 

    Google Scholar 

  • Colloca, F., Mastrantonio, G., Lasinio, G. J., Ligas, A. & Sartor, P. Parapenaeus longirostris (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. J. Mar. Syst. 138, 29–39 (2014).

    Article 

    Google Scholar 

  • Woods, P. J. et al. (2021) A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change. ICES J. Mar. Sci. fsab146

  • Gonzalez-Mon, B. et al. Spatial diversification as a mechanism to adapt to environmental changes in small-scale fisheries. Environ. Sci. Policy 116, 246–257 (2021).

    Article 

    Google Scholar 

  • Garza-Gil, M. D., Torralba-Cano, J. & Varela-Lafuente, M. M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Chang. 11, 87–95 (2011).

    Article 

    Google Scholar 

  • Borges, M. F., Santos, A. M. P., Crato, N., Mendes, H. & Mota, B. Sardine regime shifts off Portugal: A time series analysis of catches and wind conditions. Sci. Mar. 67, 235–244 (2003).

    Article 

    Google Scholar 

  • Garrido, S. et al. Temperature and food-mediated variability of European Atlantic sardine recruitment. Prog. Oceanogr. 159, 267–275 (2017).

    ADS 
    Article 

    Google Scholar 

  • ICES. Report of the working group on southern horse mackerel, anchovy and sardine (WGHANSA). (2018).

  • Szalaj, D. et al. Food-web dynamics in the Portuguese continental shelf ecosystem between 1986 and 2017: Unravelling drivers of sardine decline. Estuar. Coast. Shelf Sci. 251, 107259 (2021).

    Article 

    Google Scholar 

  • Feijó, D. et al. Catch and yield trends of the Portuguese purse seine fishery (2006–2018). Front. Mar. Sci. https://doi.org/10.3389/conf.fmars.2019.08.00013 (2019).

    Article 

    Google Scholar 

  • Schickele, A., Francour, P. & Raybaud, V. European cephalopods distribution under climate-change scenarios. Sci. Rep. 11, 3930 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Purcell, S. W., Crona, B. I., Lalavanua, W. & Eriksson, H. Distribution of economic returns in small-scale fisheries for international markets: A value-chain analysis. Mar. Policy 86, 9–16 (2017).

    Article 

    Google Scholar 

  • Thiao, D., Leport, J., Ndiaye, B. & Mbaye, A. Need for adaptive solutions to food vulnerability induced by fish scarcity and unaffordability in Senegal. Aquat. Living Resour. 31, 25 (2018).

    Article 

    Google Scholar 

  • Education, A. & Variability, H. Cardoso, C., Lourenço, H., Costa, S., Gonçalves, S. & Leonor Nunes, M. Survey Into the Seafood Consumption Preferences and Patterns in the Portuguese Population. J. Food Prod. Mark. 22, 421–435 (2016).

    Article 

    Google Scholar 

  • Holsten, A. & Kropp, J. P. An integrated and transferable climate change vulnerability assessment for regional application. Nat. Hazards 64, 1977–1999 (2012).

    Article 

    Google Scholar 

  • Umweltbundesamt guidelines for climate impact and vulnerability assessments recommendations of the interministerial working group on adaptation to climate change of the German federal government for our environment.


  • Source: Ecology - nature.com

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    MIT student club Engineers Without Borders works with local village in Tanzania