in

Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms

[adace-ad id="91168"]
  • Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.

    PubMed 

    Google Scholar 

  • Leibold MA. Chase JM Metacommunity Ecology. Levin SA, Horn HS, editors: Princeton University Press, Princeton; 2018.

  • Logue JB, Mouquet N, Peter H, Hillebrand H, Declerck P, Flohre A, et al. Empirical approaches to metacommunities: A review and comparison with theory. Trends Ecol Evol. 2011;26:482–91.

    PubMed 

    Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.

    CAS 
    PubMed 

    Google Scholar 

  • Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.

    PubMed 

    Google Scholar 

  • Langenheder S, Lindström ES. Factors influencing aquatic and terrestrial bacterial community assembly. Environ Microbiol Rep. 2019;11:306–15.

    PubMed 

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.

    Google Scholar 

  • Vass M, Langenheder S. The legacy of the past: Effects of historical processes on microbial metacommunities. Aquat Micro Ecol. 2017;79:13–9.

    Google Scholar 

  • Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.

    Google Scholar 

  • Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci. 2015;112:E1326–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang FG, Zhang QG. Patterns in species persistence and biomass production in soil microcosms recovering from a disturbance reject a neutral hypothesis for bacterial community assembly. PLoS One. 2015;10:e0126962.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD, et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci. 2014;111:E836–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrenberg S, O’Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 2013;7:1102–11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang L, Morin PJ. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J Anim Ecol. 2007;76:660–8.

    PubMed 

    Google Scholar 

  • Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci. 2014;281:20132637.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grainger TN, Letten AD, Gilbert B, Fukami T. Applying modern coexistence theory to priority effects. Proc Natl Acad Sci. 2019;116:6205–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang L, Patel SN. Community assembly in the presence of disturbance: A microcosm experiment. Ecology 2008;89:1931–40.

    PubMed 

    Google Scholar 

  • Loeuille N, Leibold MA. Evolution in metacommunities: On the relative importance of species sorting and monopolization in structuring communities. Am Nat. 2008;171:788–99.

    PubMed 

    Google Scholar 

  • Shade A, Jones SE, McMahon KD. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ Microbiol. 2008;10:1057–67.

    CAS 
    PubMed 

    Google Scholar 

  • Pereira CL, Araújo MB, Matias MG. Interplay between productivity and regional species pool determines community assembly in aquatic microcosms. Aquat Sci. 2018;80:45.

    Google Scholar 

  • Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neubauer SC, Piehler MF, Smyth AR, Franklin RB. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems. 2018;22:912–28.

    Google Scholar 

  • Rath KM, Fierer N, Murphy DV, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019;13:836–46.

    CAS 
    PubMed 

    Google Scholar 

  • Tang X, Xie G, Shao K, Tian W, Gao G, Qin B. Aquatic bacterial diversity, community composition and assembly in the semi-arid Inner Mongolia Plateau: combined effects of salinity and nutrient levels. Microorganisms. 2021;9:208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst Biol. 2011;5:S15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Langenheder S, Comte J, Zha Y, Samad MS, Sinclair L, Eiler A, et al. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. Environ Microbiol Rep. 2016;8:479–85.

    CAS 
    PubMed 

    Google Scholar 

  • Comte J, Lindström ES, Eiler A, Langenheder S. Can marine bacteria be recruited from freshwater sources and the air? ISME J. 2014;8:2423–30.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Comte J, Langenheder S, Berga M, Lindström ES. Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change. Environ Microbiol. 2017;19:251–60.

    CAS 
    PubMed 

    Google Scholar 

  • Langenheder S, Ragnarsson H. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 2007;88:2154–61.

    PubMed 

    Google Scholar 

  • del Giorgio PA, Bird DF, Prairie YT, Planas D. Flow cytometric determination of bacterial abundance in lakeplankton with the green nucleid acid stain SYTO 13. Limnol Oceanogr. 1996;41:783–9.

    Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 2013;7:2061–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Székely AJ, Berga M, Langenheder S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 2013;7:61–71.

    PubMed 

    Google Scholar 

  • Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.

    Google Scholar 

  • Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, et al. DegePrime, a program for degenerate primer design for broad- taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol. 2014;80:5116–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J. 2011;17:10–2.

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 

    Google Scholar 

  • Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 2012;93:2533–47.

    PubMed 

    Google Scholar 

  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R package version 2.5-7. ed 2020.

  • Bier RL Field and chemistry data from 2016 Fluctuations Project Data sets. In: DiVA, editor. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3517382016.

  • Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. 2012;50:1–23.

    Google Scholar 

  • Willis A, Martin BD, Trinh P, Teichman S, Barger K, Bunge J. Breakaway: Species Richness Estimation and Modeling. R package version 4.7.3. ed. 2020.

  • Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M. Betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.5.2 ed. 2020.

  • Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL, editors. Wiley StatsRef: Statistics Reference Online: John Wiley & Sons, Inc; 2017. p. 1–15.

  • Jabot F, Laroche F, Massol F, Arthaud F, Crabot J, Dubart M, et al. Assessing metacommunity processes through signatures in spatiotemporal turnover of community composition. Ecol Lett. 2020;23:1330–9.

    PubMed 

    Google Scholar 

  • Rosseel Y. Lavaan: An R Package for Structural Equation Modeling. J Stat Softw. 2012;48:1–36.

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics 2008;24:282–4.

    CAS 
    PubMed 

    Google Scholar 

  • Drake JA. Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat. 1991;137:1–26.

    Google Scholar 

  • Orrock JL, Fletcher RL Jr. Changes in community size affect the outcome of competition. Am Nat. 2005;166:107–11.

    PubMed 

    Google Scholar 

  • Fukami T. Community assembly along a species pool gradient: implications for multiple‐scale patterns of species diversity. Popul Ecol. 2004;46:137–47.

    Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Werba JA, Stucy AL, Peralta AL, McCoy MW. Effects of diversity and coalescence of species assemblages on ecosystem function at the margins of an environmental shift. PeerJ. 2020;8:e8608.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.

    CAS 
    PubMed 

    Google Scholar 

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2013;7:937–48.

    CAS 
    PubMed 

    Google Scholar 

  • Muylaert K, Van Der Gucht K, Vloemans N, Meester LD, Gillis M, Vyverman W. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol. 2002;68:4740–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee AM, Sæther B-E, Engen S. Spatial covariation of competing species in a fluctuating environment. Ecology 2020;101:e02901.

    PubMed 

    Google Scholar 

  • Liu J, Fu B, Yang H, Zhao M, He B, Zhang XH. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Front Microbiol. 2015;6:64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication: National University of Ireland, Galway; 2022.

  • Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 2014;5:e01371–14.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersson MGI, Berga M, Lindström ES, Langenheder S. The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology 2014;95:1134–40.

    PubMed 

    Google Scholar 

  • Ai D, Gravel D, Chu C, Wang G. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities. PLoS One. 2013;8:e68927.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maloufi S, Catherine A, Mouillot D, Louvard C, Couté A, Bernard C, et al. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshw Biol. 2016;61:633–45.

    Google Scholar 

  • Firkowski CR, Thompson PL, Gonzalez A, Cadotte MW, Fortin M-J. Multi-trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. Ecol Monogr. n/a:e1484.

  • Lennon JT, Jones SE. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.

    CAS 
    PubMed 

    Google Scholar 

  • Knope ML, Forde SE, Fukami T. Evolutionary history, immigration history, and the extent of diversification in community assembly. Front Microbiol. 2011;2:273.

    PubMed 

    Google Scholar 

  • Fukami T. Assembly history interacts with ecosystem size to influence species diversity. Ecology 2004;85:3234–42.

    Google Scholar 

  • Orrock JL, Watling JI. Local community size mediates ecological drift and competition in metacommunities. Proc Biol Sci. 2010;277:2185–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chase JM. Community assembly: When should history matter? Oecologia 2003;136:489–98.

    PubMed 

    Google Scholar 

  • Ron R, Fragman-Sapir O, Kadmon R. Dispersal increases ecological selection by increasing effective community size. Proc Natl Acad Sci. 2018;115:11280–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siqueira T, Saito VS, Bini LM, Melo AS, Petsch DK, Landeiro VL, et al. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology 2020;101:e03014.

    PubMed 

    Google Scholar 

  • Vass M, Székely AJ, Lindström ES, Langenheder S. Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Sci Rep. 2020;10:2455.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen D, Langenheder S, Jürgens K. Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol. 2018;9:2188.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunze S, Heydel F, Tackenberg O. Are plant species able to keep pace with the rapidly changing climate? PLoS One. 2013;8:e67909.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    A dataset of road-killed vertebrates collected via citizen science from 2014–2020

    Permian hypercarnivore suggests dental complexity among early amniotes