Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).
Google Scholar
Almond, R., Grooten, M. & Peterson, T. Living Planet Report 2020-Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).
Beverton, R. Fish resources; threats and protection. Neth. J. Zool. 42, 139–175 (1991).
Google Scholar
Jackson, S. & Head, L. Australia’s mass fish kills as a crisis of modern water: Understanding hydrosocial change in the Murray-Darling Basin. Geoforum 109, 44–56 (2020).
Google Scholar
Rees, H. C. et al. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).
Google Scholar
Rees, H. C. et al. The application of eDNA for monitoring of the Great Crested Newt in the UK. Ecol. Evol. 4, 4023–4032 (2014).
Google Scholar
Wang, C. et al. Research on the biodiversity of Qinhuai River based on environmental DNA metabacroding. Acta Ecol. Sin. 42, 611–624 (2022).
Google Scholar
Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Cons. 183, 53–63 (2015).
Google Scholar
Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).
Google Scholar
Miralles, L., Parrondo, M., Hernandez de Rojas, A., Garcia-Vazquez, E. & Borrell, Y. J. Development and validation of eDNA markers for the detection of Crepidula fornicata in environmental samples. Mar. Pollut. Bull. 146, 827–830 (2019).
Google Scholar
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS ONE 7, e35868 (2012).
Google Scholar
Aglieri, G. et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 30, 3127–3139 (2020).
Google Scholar
Yang, H. et al. Effectiveness assessment of using riverine water eDNA to simultaneously monitor the riverine and riparian biodiversity information. Sci. Rep. 11, 24241 (2021).
Google Scholar
Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).
Google Scholar
Stat, M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33, 196–205 (2019).
Google Scholar
Hallam, J., Clare, E. L., Jones, J. I. & Day, J. J. Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environ. DNA 3, 1247–1266 (2021).
Google Scholar
Gao, W. Beijing Vertebrate Key (Beijing Publishing House, 1994).
Wang, H. Beijing Fish and Amphibians and Reptiles (Beijing Publishing House, 1994).
Chen, W., Hu, D. & Fu, B. Research on Biodiversity of Beijing Wetland (Science Press, 2007).
Zhang, C. et al. Fish species diversity and conservation in Beijing and adjacent areas. Biodivers. Sci. 19, 597–604 (2011).
Google Scholar
Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).
Google Scholar
Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).
Google Scholar
Fu, M., Xiao, N., Zhao, Z., Gao, X. & Li, J. Effects of Urbanization on Ecosystem Services in Beijing. Res. Soil Water Conserv. 23, 235–239 (2016).
Hao, L. & Sun, G. Impacts of urbanization on watershed ecohydrological processes: progresses and perspectives. Acta Ecol. Sin. 41, 13–26 (2021).
Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).
Google Scholar
Yan, B. et al. Effects of urban development on soil microbial functional diversity in Beijing. Res. Environ. Sci. 29, 1325–1335 (2016).
Google Scholar
Xiao, N., Gao, X., Li, J. & Bai, J. Evaluation and Conservation Measures of Beijing Biodiversity (China Forestry Publishing House, 2018).
Xu, S., Wang, Z., Liang, J. & Zhang, S. Use of different sampling tools for comparison of fish-aggregating effects along horizontal transect at two artificial reef sites in Shengsi. J. Fish. China 40, 820–831 (2016).
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
Google Scholar
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics (Oxford, England) 30, 614–620 (2014).
Google Scholar
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, 884–890 (2018).
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461 (2010).
Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
Google Scholar
Iwasaki, W. et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 30, 2531–2540 (2013).
Google Scholar
Wang, H. Beijing Fish Records (Beijing Publishing House, 1984).
Du, L. et al. Fish community characteristics and spatial pattern in major rivers of Beijing City. Res. Environ. Sci. 32, 447–457 (2019).
Shen, W. & Ren, H. TaxonKit: A practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics 48, 844–850 (2021).
Google Scholar
Karr, J. R. Assessment of biotic integrity using fish communities. Fisheries 6, 21–27 (1981).
Google Scholar
Zhang, C. & Zhao, Y. Fishes in Beijing and Adjacent Areas (China. Science Press, 2013).
Wu, H. & Zhong, J. Fauna Sinica, Osteichthyes, Perciformess(Five),Gobioidei (Science Press, 2008).
Di, Y. et al. Distribution of fish communities and its influencing factors in the Nansha and Beijing sub-center reaches of the Beiyun River. Acta Sci. Circumst. 41, 156–163 (2020).
Walters, D. M., Freeman, M. C., Leigh, D. S., Freeman, B. J. & Pringle, C. M. in Effects of Urbanization on Stream Ecosystems Vol. 47 American Fisheries Society Symposium 69–85 (2005).
Hu, X., Zuo, D., Liu, B., Huang, Z. & Xu, Z. Quantitative analysis of the correlation between macrobenthos community and water environmental factors and aquatic ecosystem health assessment in the North Canal River Basin of Beijing. Environ. Sci. 43, 247–255 (2022).
Kadye, W. T., Magadza, C. H. D., Moyo, N. A. G. & Kativu, S. Stream fish assemblages in relation to environmental factors on a montane plateau (Nyika Plateau, Malawi). Environ. Biol. Fishes 83, 417–428 (2008).
Google Scholar
Smith, T. A. & Kraft, C. E. Stream fish assemblages in relation to landscape position and local habitat variables. Trans. Am. Fish. Soc. 134, 430–440 (2005).
Google Scholar
Blabolil, P. et al. Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats. Ecol. Ind. 126, 107698 (2021).
Google Scholar
Xie, R. et al. eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. Environ. Res. 201, 111602 (2021).
Google Scholar
Qu, C. et al. Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding. Sci. Rep. 10, 16715 (2020).
Google Scholar
Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361 (2018).
Google Scholar
Doble, C. J. et al. Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: A case study from Lake Tanganyika. Environ. DNA 2, 24–41 (2020).
Google Scholar
Xu, N. et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA. Sci. Nat. 105, 62 (2018).
Google Scholar
Laramie, M. B., Pilliod, D. S. & Goldberg, C. S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Cons. 183, 29–37 (2015).
Google Scholar
Harper, L. R. et al. Development and application of environmental DNA surveillance for the threatened crucian carp (Carassius carassius). Freshw. Biol. 64, 93–107 (2019).
Google Scholar
Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding Metagenomics 2, e2329 (2018).
Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2015).
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).
Google Scholar
Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. Biol. Sci. 286, 20191409 (2019).
Google Scholar
Kelly, R. P., Shelton, A. O. & Gallego, R. Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci. Rep. 9, 12133 (2019).
Google Scholar
Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).
Google Scholar
Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).
Google Scholar
Shogren, A. J. et al. Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environ. Sci. Technol. 52, 8530–8537 (2018).
Google Scholar
Zhao, B., van Bodegom, P. M. & Trimbos, K. The particle size distribution of environmental DNA varies with species and degradation. Sci. Total Environ. 797, 149175 (2021).
Google Scholar
Source: Ecology - nature.com