in

eDNA metabarcoding as a promising conservation tool to monitor fish diversity in Beijing water systems compared with ground cages

  • Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Almond, R., Grooten, M. & Peterson, T. Living Planet Report 2020-Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).

    Google Scholar 

  • Beverton, R. Fish resources; threats and protection. Neth. J. Zool. 42, 139–175 (1991).

    Article 

    Google Scholar 

  • Jackson, S. & Head, L. Australia’s mass fish kills as a crisis of modern water: Understanding hydrosocial change in the Murray-Darling Basin. Geoforum 109, 44–56 (2020).

    Article 

    Google Scholar 

  • Rees, H. C. et al. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).

    CAS 
    Article 

    Google Scholar 

  • Rees, H. C. et al. The application of eDNA for monitoring of the Great Crested Newt in the UK. Ecol. Evol. 4, 4023–4032 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, C. et al. Research on the biodiversity of Qinhuai River based on environmental DNA metabacroding. Acta Ecol. Sin. 42, 611–624 (2022).

    Article 

    Google Scholar 

  • Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Cons. 183, 53–63 (2015).

    Article 

    Google Scholar 

  • Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miralles, L., Parrondo, M., Hernandez de Rojas, A., Garcia-Vazquez, E. & Borrell, Y. J. Development and validation of eDNA markers for the detection of Crepidula fornicata in environmental samples. Mar. Pollut. Bull. 146, 827–830 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS ONE 7, e35868 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aglieri, G. et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 30, 3127–3139 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Yang, H. et al. Effectiveness assessment of using riverine water eDNA to simultaneously monitor the riverine and riparian biodiversity information. Sci. Rep. 11, 24241 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).

    Article 

    Google Scholar 

  • Stat, M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33, 196–205 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Hallam, J., Clare, E. L., Jones, J. I. & Day, J. J. Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environ. DNA 3, 1247–1266 (2021).

    Article 

    Google Scholar 

  • Gao, W. Beijing Vertebrate Key (Beijing Publishing House, 1994).

    Google Scholar 

  • Wang, H. Beijing Fish and Amphibians and Reptiles (Beijing Publishing House, 1994).

    Google Scholar 

  • Chen, W., Hu, D. & Fu, B. Research on Biodiversity of Beijing Wetland (Science Press, 2007).

    Google Scholar 

  • Zhang, C. et al. Fish species diversity and conservation in Beijing and adjacent areas. Biodivers. Sci. 19, 597–604 (2011).

    Article 

    Google Scholar 

  • Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).

    Article 

    Google Scholar 

  • Fu, M., Xiao, N., Zhao, Z., Gao, X. & Li, J. Effects of Urbanization on Ecosystem Services in Beijing. Res. Soil Water Conserv. 23, 235–239 (2016).

    Google Scholar 

  • Hao, L. & Sun, G. Impacts of urbanization on watershed ecohydrological processes: progresses and perspectives. Acta Ecol. Sin. 41, 13–26 (2021).

    Google Scholar 

  • Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yan, B. et al. Effects of urban development on soil microbial functional diversity in Beijing. Res. Environ. Sci. 29, 1325–1335 (2016).

    CAS 

    Google Scholar 

  • Xiao, N., Gao, X., Li, J. & Bai, J. Evaluation and Conservation Measures of Beijing Biodiversity (China Forestry Publishing House, 2018).

    Google Scholar 

  • Xu, S., Wang, Z., Liang, J. & Zhang, S. Use of different sampling tools for comparison of fish-aggregating effects along horizontal transect at two artificial reef sites in Shengsi. J. Fish. China 40, 820–831 (2016).

    Google Scholar 

  • Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics (Oxford, England) 30, 614–620 (2014).

    CAS 
    Article 

    Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, 884–890 (2018).

    Article 
    CAS 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461 (2010).

    CAS 
    Article 

    Google Scholar 

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Iwasaki, W. et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 30, 2531–2540 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, H. Beijing Fish Records (Beijing Publishing House, 1984).

    Google Scholar 

  • Du, L. et al. Fish community characteristics and spatial pattern in major rivers of Beijing City. Res. Environ. Sci. 32, 447–457 (2019).

    Google Scholar 

  • Shen, W. & Ren, H. TaxonKit: A practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics 48, 844–850 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Karr, J. R. Assessment of biotic integrity using fish communities. Fisheries 6, 21–27 (1981).

    Article 

    Google Scholar 

  • Zhang, C. & Zhao, Y. Fishes in Beijing and Adjacent Areas (China. Science Press, 2013).

    Google Scholar 

  • Wu, H. & Zhong, J. Fauna Sinica, Osteichthyes, Perciformess(Five),Gobioidei (Science Press, 2008).

    Google Scholar 

  • Di, Y. et al. Distribution of fish communities and its influencing factors in the Nansha and Beijing sub-center reaches of the Beiyun River. Acta Sci. Circumst. 41, 156–163 (2020).

    Google Scholar 

  • Walters, D. M., Freeman, M. C., Leigh, D. S., Freeman, B. J. & Pringle, C. M. in Effects of Urbanization on Stream Ecosystems Vol. 47 American Fisheries Society Symposium 69–85 (2005).

  • Hu, X., Zuo, D., Liu, B., Huang, Z. & Xu, Z. Quantitative analysis of the correlation between macrobenthos community and water environmental factors and aquatic ecosystem health assessment in the North Canal River Basin of Beijing. Environ. Sci. 43, 247–255 (2022).

    Google Scholar 

  • Kadye, W. T., Magadza, C. H. D., Moyo, N. A. G. & Kativu, S. Stream fish assemblages in relation to environmental factors on a montane plateau (Nyika Plateau, Malawi). Environ. Biol. Fishes 83, 417–428 (2008).

    Article 

    Google Scholar 

  • Smith, T. A. & Kraft, C. E. Stream fish assemblages in relation to landscape position and local habitat variables. Trans. Am. Fish. Soc. 134, 430–440 (2005).

    Article 

    Google Scholar 

  • Blabolil, P. et al. Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats. Ecol. Ind. 126, 107698 (2021).

    CAS 
    Article 

    Google Scholar 

  • Xie, R. et al. eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. Environ. Res. 201, 111602 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qu, C. et al. Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding. Sci. Rep. 10, 16715 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Doble, C. J. et al. Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: A case study from Lake Tanganyika. Environ. DNA 2, 24–41 (2020).

    Article 

    Google Scholar 

  • Xu, N. et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA. Sci. Nat. 105, 62 (2018).

    Article 
    CAS 

    Google Scholar 

  • Laramie, M. B., Pilliod, D. S. & Goldberg, C. S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Cons. 183, 29–37 (2015).

    Article 

    Google Scholar 

  • Harper, L. R. et al. Development and application of environmental DNA surveillance for the threatened crucian carp (Carassius carassius). Freshw. Biol. 64, 93–107 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding Metagenomics 2, e2329 (2018).

    Google Scholar 

  • Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. Biol. Sci. 286, 20191409 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, R. P., Shelton, A. O. & Gallego, R. Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci. Rep. 9, 12133 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shogren, A. J. et al. Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environ. Sci. Technol. 52, 8530–8537 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhao, B., van Bodegom, P. M. & Trimbos, K. The particle size distribution of environmental DNA varies with species and degradation. Sci. Total Environ. 797, 149175 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Kerry Emanuel: A climate scientist and meteorologist in the eye of the storm

    Better living through multicellular life cycles