in

Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil

  • IPCC (2013) Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D Qin, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V & Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp (2013).

  • Graham, L.P. Projections of Future Anthropogenic Climate Change [in:] Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Bolle H.J., Menenti M., Rasool I. Series Editors Springer-Verlag Berlin Heidelberg s.133–220 (2008).

  • Früchtenich, E., Bock, J., Feucht, V., Früchtenich W. Reactions of three European oak species ( Q. robur, Q. petraea and Q. ilex ) to repetitive summer drought in sandy soil. Trees, Forests and People 5: 100093 (2021).

  • Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419, 64–77 (2016).

    CAS 
    Article 

    Google Scholar 

  • Willliams, A. & De Vries, F. T. Plant root exudation under drought: Implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2019).

    Article 

    Google Scholar 

  • Canarini, A., Merchant, A. & Dijkstra, F. A. Drought effects on Helianthus annuus and Glycine max metabolites: From phloem to root exudates. Rhizosphere 2, 85–97 (2016).

    Article 

    Google Scholar 

  • De Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).

    Article 

    Google Scholar 

  • Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation indu ces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).

    Article 

    Google Scholar 

  • Meier, I. C. et al. Root exudation of mature beech forests across a nutrient availability gradient: The role of root morphology and fungal activity. New Phytol. 226, 583–594 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gianfreda, L. Enzymes of importance to rhizosphere processes. J. Soil Sci. Plant Nutr. 15, 283–306 (2015).

    Google Scholar 

  • Małek, S., Ważny, R., Błońska, E., Jasik, M. & Lasota, J. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains. Sci. Total Environ. 751, 142335 (2021).

    ADS 
    Article 

    Google Scholar 

  • Zuccarini, P., Asensio, D., Ogaya, R., Sardans, J. & Penuelas, J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Change Biol. 26, 3698–3714 (2019).

    ADS 
    Article 

    Google Scholar 

  • Sing, S. et al. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions. Sci. Rep. 11, 10841 (2021).

    ADS 
    Article 

    Google Scholar 

  • Sardans, J. & Penuelas, J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 37, 455–461 (2005).

    CAS 
    Article 

    Google Scholar 

  • Czúcz, B., Gálhidy, L. & Mátyás, C. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann. For. Sci. 68, 99–108. https://doi.org/10.1007/s13595-011-0011-4 (2011).

    Article 

    Google Scholar 

  • Sáenz-Romero, C. et al. Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Glob. Change Biol. 23, 2831–2847 (2018).

    ADS 
    Article 

    Google Scholar 

  • Regulation of the Minister of the Environment. Detailed requirements for the forest reprudactive material (Dz. U. Nr 31, poz. 272) (in Polish) (2004).

  • Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999. https://doi.org/10.1111/j.1365-2435.2008.01495.x (2008).

    Article 

    Google Scholar 

  • Ostonen, I., Lõhmus, K. & Lasn, R. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant Soil 208, 283–292 (1999).

    CAS 
    Article 

    Google Scholar 

  • Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 58, 233–241 (2004).

    CAS 
    Article 

    Google Scholar 

  • Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fert. Soils 52, 505–514 (2016).

    CAS 
    Article 

    Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Hartmann, H. Will a 385million year-struggle for light become a struggle for water and for carbon?–how trees may cope with more frequent climate change-type drought events. Glob. Change Biol. 17, 642–655 (2011).

    ADS 
    Article 

    Google Scholar 

  • Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).

    Article 

    Google Scholar 

  • Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).

    Article 

    Google Scholar 

  • Poorter, L. & Markesteijn, L. Seedling Traits Determine Drought Tolerance of Tropical Tree Species. Biotropica 40, 321–331 (2008).

    Article 

    Google Scholar 

  • Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442 (2007).

    Article 

    Google Scholar 

  • Lozano, Y. M., Aguilar-Triqueros, C. A., Flaig, I. C. & Rillig, M. C. Root trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol. 34, 2224–2235 (2020).

    Article 

    Google Scholar 

  • De Vries, F. T., Brown, C. & Stevens, C. J. Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil 409, 297–312 (2016).

    Article 

    Google Scholar 

  • Sell, M. et al. Responses of fine root exudation, respiration and morphology in three early successional ree species to increased air humidity and different soil nitrogen sources. Tree Physiol. 42, 557–569. https://doi.org/10.1093/treephys/tpab118 (2021).

    Article 

    Google Scholar 

  • Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593. https://doi.org/10.3389/fpls.2018.01593 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol. 201, 916–927. https://doi.org/10.1111/nph.12569 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696. https://doi.org/10.1038/s41598-018-30150-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X., Dippold, M. A., Kuzyakov, Y. & Razavi, B. S. Spatial pattern of enzyme activities depends on root exudate composition. Soil Biol. Biochem. 133, 83–93. https://doi.org/10.1016/j.soilbio.2019.02.010 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hommel, R. et al. Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol. 18, 785–796. https://doi.org/10.1111/plb.12461 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Team creates map for production of eco-friendly metals

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC