in

Effectiveness of protection areas in safeguarding biodiversity and ecosystem services in Tibet Autonomous Region

  • 1.

    Cao, S. & Zhang, J. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 28, 898–903 (2015).

    ADS 

    Google Scholar 

  • 2.

    Kinzig, A. P. et al. Response—Ecosystem services: Free lunch no more. Science 335, 656 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. For. Ecol. Manage. 319, 1–9 (2014).

    Google Scholar 

  • 4.

    Chen, Z. et al. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 648, 1097–1104 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Boerema, A., Van Passel, S. & Meire, P. Cost-effectiveness analysis of ecosystem management with ecosystem services: From theory to practice. Ecol. Econ. 152, 207–218 (2018).

    Google Scholar 

  • 6.

    Bouwma, I. et al. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 29, 213–222 (2018).

    Google Scholar 

  • 7.

    Carpenter, S. R. et al. Millennium ecosystem assessment: Research needs. Science 314, 257 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Xiao, Q., Tao, J., Xiao, Y. & Qian, F. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data. Environ. Monit. Assess. 189, 493 (2017).

    PubMed 

    Google Scholar 

  • 9.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Zhang, J. et al. Modeling activity patterns of wildlife using time-series analysis. Ecol. Evol. 7, 2575–2584 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Ouyang, W. et al. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 613–614, 798–809 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 13.

    Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Feng, X. et al. Human cystic and alveolar echinococcosis in the Tibet Autonomous Region (TAR), China. J. Helminthol. 89, 671–679 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Hallquist, M. et al. Photochemical smog in China: Scientific challenges and implications for air-quality policies. Natl. Sci. Rev. 3, 401–403 (2016).

    CAS 

    Google Scholar 

  • 17.

    Zhang, G. G. et al. Abundance and conservation of waterbirds breeding on the Changtang Plateau, Tibet Autonomous Region, China. Waterbirds 38, 19–29 (2015).

    CAS 

    Google Scholar 

  • 18.

    Sun, D. et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manage. 422, 1–10 (2018).

    Google Scholar 

  • 19.

    Wangdwei, M., Steele, B. & Harris, R. B. Demographic responses of plateau pikas to vegetation cover and land use in the Tibet Autonomous Region, China. J. Mammal. 94, 1077–1086 (2013).

    Google Scholar 

  • 20.

    Zhuo, G., La, B., Pubu, C. & Luo, B. Study on daily surface evapotranspiration with SEBS in Tibet Autonomous Region. J. Geogr. Sci. 24, 113–128 (2014).

    ADS 

    Google Scholar 

  • 21.

    Butarbutar, T., Soedirman, S., Neupane, P. R. & Köhl, M. Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. For. Ecosyst. https://doi.org/10.1186/s40663-019-0195-x (2019).

    Article 

    Google Scholar 

  • 22.

    Yu, W. J. & Zhou, W. Q. Spatial pattern of urban change in two Chinese megaregions: Contrasting responses to national policy and economic mode. Sci. Total Environ. 634, 1362–1371 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Storch, F., Kändler, G. & Bauhus, J. Assessing the influence of harvesting intensities on structural diversity of forests in south-west Germany. For. Ecosyst. https://doi.org/10.1186/s40663-019-0199-6 (2019).

    Article 

    Google Scholar 

  • 24.

    Xiao, Y. & Xiao, Q. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environ. Monit. Assess 190, 258 (2018).

    PubMed 

    Google Scholar 

  • 25.

    Ge, J. et al. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 218, 162–173 (2018).

    ADS 

    Google Scholar 

  • 26.

    Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Xin, S. et al. Forestland-cover changes in China’s tropical area: Historical patterns, implications, and policy options-a case study from Xishuangbanna. J. Sustain. For. 36, 18–31 (2017).

    Google Scholar 

  • 28.

    Rao, Y. et al. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 186, 662–672 (2018).

    Google Scholar 

  • 29.

    Ricketts, T. H. et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7, 13106 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Nguyen, M. D., Ancev, T. & Randall, A. Forest governance and economic values of forest ecosystem services in Vietnam. Land Use Policy 97, 103297 (2018).

    Google Scholar 

  • 31.

    Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A. 114, 1601–1606 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. U.S.A. 117, 14593–14601 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Anne, B. et al. Towards an operational methodology to optimize ecosystem services provided by urban soils. Landsc. Urban Plan. 176, 1–9 (2018).

    Google Scholar 

  • 34.

    Karlen, D. L., Peterson, G. A. & Westfall, D. G. Soil and water conservation: Our history and future challenges. Soil Sci. Soc. Am. J. 78, 1493–1499 (2014).

    ADS 

    Google Scholar 

  • 35.

    Tuo, D., Xu, M. & Gao, G. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau. Sci. Total Environ. 633, 1032–1040 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Rubio-Delgado, J., Schnabel, S., Gómez-Gutiérrez, Á. & Sánchez-Fernández, M. Estimation of soil erosion rates in dehesas using the inflection point of holm oaks. CATENA 166, 56–67 (2018).

    Google Scholar 

  • 37.

    Abouabdillah, A. et al. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use Manage. 30, 539–549 (2014).

    Google Scholar 

  • 38.

    Dominati, E. J., Mackay, A., Lynch, B., Heath, N. & Millner, I. An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosyst. Serv. 9, 204–215 (2014).

    Google Scholar 

  • 39.

    Engdawork, A. & Bork, H.-R. Long-term indigenous soil conservation technology in the Chencha Area, Southern Ethiopia: Origin, characteristics, and sustainability. Ambio 43, 932–942 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Sverdrup, H. U. & Olafsdottir, A. H. Considerations on the future biomass production potential of Iceland, and what role that could have in future fuel supply and carbon balances. J. Sustain. For. 36, 647–665 (2017).

    Google Scholar 

  • 41.

    Ofoegbu, C. & Speranza, C. I. Assessing rural peoples’ intention to adopt sustainable forest use and management practices in South Africa. J. Sustain. For. 36, 729–746 (2017).

    Google Scholar 

  • 42.

    Munyati, C. & Sinthumule, N. I. Cover gradients and the forest-community frontier: Indigenous forests under communal management at Vondo and Xanthia, South Africa. J. Sustain. For. 33, 757–775 (2014).

    Google Scholar 

  • 43.

    Xiao, Q., Gao, Y., Hu, D., Tan, H. & Wang, T. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: A case study for China’s Hunan Province. Int. J. Environ. Res. Public Health 8, 2937–2950 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Sun, Q., Miao, C., Qiao, Y. & Duan, Q. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim. Dyn. 49, 4281–4292 (2017).

    Google Scholar 

  • 45.

    Cao, S., Chen, L., Xu, C. & Liu, Z. Impact of three soil types on afforestation in China’s Loess Plateau: Growth and survival of six tree species and their effects on soil properties. Landsc. Urban Plan. 83, 208–217 (2007).

    Google Scholar 

  • 46.

    Setten, G. & Brown, K. M. Ecosystem services as an integrative framework: What is the potential? Land Use Policy 75, 549–556 (2018).

    Google Scholar 

  • 47.

    Arroyo-Vargas, P., Fuentes-Ramírez, A., Muys, B. & Pauchard, A. Impacts of fire severity and cattle grazing on early plant dynamics in old-growth Araucaria-Nothofagus forests. For. Ecosyst. https://doi.org/10.1186/s40663-019-0202-2 (2019).

    Article 

    Google Scholar 

  • 48.

    Paudel, S. & Sah, J. P. Effects of different management practices on stand composition and species diversity in subtropical forests in Nepal: Implications of community participation in biodiversity conservation. J. Sustain. For. 34, 738–760 (2015).

    Google Scholar 

  • 49.

    Su, L., Miao, C., Borthwick, A. G. L. & Duan, Q. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales. Gondwana Res. 49, 94–105 (2017).

    ADS 

    Google Scholar 

  • 50.

    Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Schuldt, A. et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10, 1460 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Miao, C., Sun, Q., Duan, Q. & Wang, Y. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dyn. 47, 3221–3234 (2016).

    Google Scholar 

  • 53.

    Zhang, J. et al. Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales. Biol. Conserv. 209, 119–129 (2017).

    Google Scholar 

  • 54.

    Cao, S., Liu, Y., Su, W., Zheng, X. & Yu, Z. The net ecosystem services value in mainland China. Sci. China Earth Sci. 61, 595–603 (2018).

    ADS 

    Google Scholar 

  • 55.

    Waiswa, D., Stern, M. J. & Prisley, S. P. Drivers of deforestation in the Lake Victoria crescent, Uganda. J. Sustain. For. 34, 259–275 (2015).

    Google Scholar 

  • 56.

    Xiao, Q. & Hu, D. Dynamic characteristics of a water resource structure in an urban ecological system: Structure modelling based on input–occupancy–output technology. J. Clean. Prod. 153, 548–557 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

    Deep learning increases the availability of organism photographs taken by citizens in citizen science programs