Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial rResistance. Environ Sci Technol. 2015;49:6772–82.
Google Scholar
Zhao WX, Wang B, Yu G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Environ Sci Pollut R. 2018;25:21467–82.
Google Scholar
Han XM, Hu HW, Chen QL, Yang LY, Li HL, Zhu YG, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol Biochem. 2018;126:91–102.
Google Scholar
Huerta B, Marti E, Gros M, López P, Pompêo M, Armengol J, et al. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ. 2013;456:161–70.
Google Scholar
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. Fems Microbiol Rev. 2009;33:430–49.
Google Scholar
Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175–86.
Google Scholar
Meng F, Yang S, Wang X, Chen T, Wang X, Tang X, et al. Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. J Infect Public Health. 2017;10:749–54.
Google Scholar
Zhou Y, Selvam A, Wong JWC. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour Technol. 2018;249:182–8.
Google Scholar
Wu HW, Sun XQ, Liang BW, Chen JB, Zhou XF. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization. J Agro-Environ Sci. 2020;39:1168–76.
Chen J, Yu Z, Michel FC Jr., Wittum T, Morrison M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol. 2007;73:4407–16.
Google Scholar
Duan M, Gu J, Wang X, Li Y, Zhang S, Yin Y, et al. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting. Ecotoxicol Environ Saf. 2018;147:637–42.
Google Scholar
Cui E, Wu Y, Zuo Y, Chen H. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour Technol. 2016;203:11–7.
Google Scholar
Ma Y, Wilson CA, Novak JT, Riffat R, Aynur S, Murthy S, Pruden A. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline Resistance Genes and Class I Integrons. Environ Sci Technol. 2011;45:7855–61.
Google Scholar
Tien YC, Li B, Zhang T, Scott A, Murray R, Sabourin L, et al. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Sci Total Environ. 2017;581-582:32–9.
Google Scholar
Zhang L, Sun XY. Effects of waste lime and Chinese medicinal herbal residue amendments on physical, chemical, and microbial properties during green waste composting. Environ Sci Pollut Res. Int. 2018;25:31381–95.
Google Scholar
Wang YQ, Wu XQ, Zhu TT, Ma QG, Chen HG. Study on utilization of solid slag compost of Chinese medicinal herbal. J Chin Medicinal Mater. 2008;31:1622–4.
Google Scholar
Wu DL, Liu P, Luo YZ, Tian GM, Mahmood Q. Nitrogen transformations during co-composting of herbal residues, spent mushrooms, and sludge. J Zhejiang Univ Sci B. 2010;11:497–505.
Google Scholar
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv. 2017;133462.
Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.
Chao A, Yang MCK. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika. 1993;80:193–201.
Google Scholar
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:623–56.
Google Scholar
Simpson EH. Measurement of diversity. Nature 1949;163:688.
Google Scholar
Huang K, Xia H, Wu Y, Chen J, Cui G, Li F, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour Technol. 2018;259:32–9.
Google Scholar
Qian X, Sun W, Gu J, Wang XJ, Sun JJ, Yin YN, et al. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure. J Hazard Mater. 2016;315:61–9.
Google Scholar
Zhang R, Gu J, Wang X, Li Y, Zhang K, Yin Y, Zhang X. Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. J Hazard Mater. 2018;358:82–91.
Google Scholar
Wang H, Sangwan N, Li HY, Su JQ, Oyang WY, Zhang ZJ, et al. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome. Isme J. 2017;11:100–11.
Google Scholar
Li J, Xin Z, Zhang Y, Chen J, Yan J, Li H, Hu H. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Appl Soil Ecol. 2017;121:193–200.
Google Scholar
Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol. 2015;49:7356–63.
Google Scholar
Li H, Duan M, Gu J, Zhang Y, Qian X, Ma J, et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol Environ Saf. 2017;140:1–6.
Google Scholar
Zhang J, Lin H, Ma J, Sun W, Yang Y, Zhang X. Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Sci Total Environ. 2019;649:396–404.
Google Scholar
Ghosh S, Ramsden SJ, LaPara TM. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. Appl Microbiol Biotechnol. 2009;84:791–6.
Google Scholar
Selvam A, Xu D, Zhao Z, Wong JW. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour Technol. 2012;126:383–90.
Google Scholar
Antunes P, Machado J, Sousa JC, Peixe L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob Agents Chemother. 2005;49:836–9.
Google Scholar
Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.
Google Scholar
Chen Q, An X, Li H, Su J, Ma Y, Zhu YG. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1–10.
Google Scholar
Source: Ecology - nature.com