Deli, J., Matus, Z. & Tóth, G. Carotenoid composition in the fruits of asparagus officinalis. J. Agric. Food Chem. 48, 2793–2796 (2000).
Google Scholar
Howard, L. R., Talcott, S. T., Brenes, C. H. & Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 48, 1713–1720 (2000).
Google Scholar
Odgerel, B. & Tserendulam, D. Effect of Chlorella as a biofertilizer on germination of wheat and barley grains. P. Mongolian Acad. Sci. 56(4), 26–31 (2016).
Sun, R. B., Guo, X. S., Wang, D. Z. & Chua, H. Y. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 95(6), 171–178 (2015).
Yu, Y. Q., Luo, Z. B., Fu, H. & Jin, Y. Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing China. Sci. Total Environ. 754, 1–8 (2021).
Ahmad, P. et al. Role of transgenic plants in agriculture and biopharming. Biotech. Adv. 30, 524–540 (2012).
Google Scholar
Sherlock, R. & Morrey, J. D. Ethical Issues in Biotechnology (Rowman and Littlefield. Publishers, Inc., 2002).
Schiavon, M., Ertani, A. & Nardi, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of TCA cycle and N metabolism in Zea mays L. J. Agric. Food Chem. 56, 11800–11808 (2008).
Google Scholar
Muscolo, A., Sidari, M. & Nardi, S. Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J. Geochem. Explor. 129, 57–63 (2013).
Google Scholar
Nardi, S., Carletti, P., Pizzeghello, D., Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. PART I. Fundamentals and Impact of Mineral-Organic-Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM). (Ed. Senesi, N., Xing, B., Huang, P.M.) 301–335 (John Wiley and Sons, Hoboken, 2009).
Ertani, A., Nardi, S. & Altissimo, A. Review: long-term research activity on the biostimulant properties of natural origin compounds. Acta Hort. 1009, 181–188 (2013).
Ertani, A. et al. Biostimulant activity of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant Nutr. Soil Sci. 172, 237–244 (2009).
Google Scholar
Vaccaro, S. et al. Effect of a compost and its water-soluble fractions on key enzymes of nitrogen metabolism in maize seedlings. J. Agric. Food Chem. 57, 11267–11276 (2009).
Google Scholar
Azcona, I. et al. Growth and development of pepper are affected by humic substances derived from composted sludge. J. Plant Nutr. Soil Sci. 174, 916–924 (2011).
Google Scholar
Schiavon, M. et al. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 36, 662–669 (2010).
Google Scholar
Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant-derived biostimulant stimulates short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2013).
Google Scholar
Pascual, I., Azcona, I., Morales, F., Aguirreolea, J. & Sanchez-Diaz, M. Growth, yield and physiology of verticillium-inoculated pepper plants treated with ATAD and composted sewage sludge. Plant Soil 319, 291–306 (2009).
Google Scholar
Pascual, I. et al. Growth, yield and fruit quality of pepper plants amended with two sanitized sewage sludges. J. Agric. Food Chem. 58, 6951–6959 (2010).
Google Scholar
Kim, M. J., Shim, C. K., Kim, Y. K., Ko, B. G. & Kim, B. H. Effect of Biostimulator Chlorella fusca on improving growth and qualities of Chinese Chives and Spinach in organic farm. Plant Pathol. J. 34(6), 567–574 (2018).
Google Scholar
Pulz, O. & Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biot. 65, 635–648 (2004).
Google Scholar
Kim, S. J., Ko, E. J., Hong, J. K. & Jeun, Y. C. Ultrastructures of Colletotrichum orbiculare in cucumber leaves expressing systemic acquired resistance mediated by Chlorella fusca. Plant Pathol. J. 34(2), 113–120 (2018).
Google Scholar
Faheed, F. A. & Abd-El Fattah, Z. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of Lettuce Plant. J. Agri. Soc. Sci. 4, 165–169 (2008).
Agwa, O. K., Ogugbue, C. J. & Williams, E. E. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int. J. Agric. Res. 12(4), 181–189 (2017).
Google Scholar
Ördög, V. et al. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Physicol. 16, 309–401 (2004).
Stirk, W. A., Novák, O., Strnad, M. & van Staden, J. Cytokinins in macroalgae. Plant Growth Regul. 41, 13–24 (2003).
Google Scholar
Kholssi, R., Marks, E. A. N., Montero, J. M. O., Debdoubi, A. & Rad, C. Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth. J. Plant Growth Regul. 38, 644–649 (2019).
Google Scholar
Stirk, W. A., Ördög, V., Van Staden, J. & Jäger, K. Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J. Appl. Phycol. 14, 215–221 (2002).
Google Scholar
Park, E. R., Jo, J. O., Kim, S. M., Lee, M. Y. & Kim, K. S. Volatile flavor component of leek (Allium tuberosum Rotter). J. Korean Soc. Food Sci. Nutr. 27, 563–567 (1998) ((in Korean)).
Google Scholar
Jin, H. et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnol. Bioeng. 117, 96–108 (2020).
Google Scholar
Kim, M. J., Shim, C. K., Kim, Y. K., Hong, S. J. & Kim, S. C. Isolation and morphological identification of fresh water green algae from organic farming habitats in Korea. Korean J. Org. Agric. 22, 743–760 (2014).
Li, L., Tian, S. L., Jiang, J. & Wang, Y. Regulation of nitric oxide to Capsicum under lower light intensities. S. Afr. J. Bot. 132, 268–276 (2020).
Google Scholar
Cho, Y. Y., Oh, S. B., Oh, M. M. & Son, J. E. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hortic-Amst. 111, 330–334 (2007).
Oster, U., Tanaka, R., Tanaka, A. & Rudiger, W. Cloning and functional expression of gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21(3), 305–310 (2000).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254 (1976).
Google Scholar
Source: Ecology - nature.com