Sacristán, D., Peñarroya, B., Recatalá, L. Increasing the Knowledge on the Management of Cu-Contaminated Agricultural Soils by Cropping Tomato (Solanum Lycopersicum L.). Land Degrad. Dev. 26, 587–595 (2015).
FAO. Land Degradation Assessment in Drylands. Manual for Local Level Assessment of Land Degradation and Sustainable Land Management. Part 1: Planning and Methodological Approach, Analysis and Reporting. https://www.fao.org/3/i6362e/i6362e.pdf (Food and Agriculture Organization of the United Nations, 2011).
Vlachodimos, K., Papatheodorou, E. M., Diamantopoulos, J. & Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit. Assess. 185, 6921–6932 (2013).
Google Scholar
Misano, G. & Di Pietro, R. Habitat 9250 “Quercus trojana woods” in Italy. Fitosociologia 44, 235–238 (2007).
Biondi, E. et al. A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41(1), 3–28 (2004).
Google Scholar
Brunetti, G. et al. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad. Dev. 29, 91–104 (2017).
Google Scholar
Poblador, S. et al. The influence of the invasive alien nitrogen-fixing Robinia pseudoacacia L. on soil nitrogen availability in a mixed Mediterranean riparian forest. Eur. J. For. Res. 138, 1083–1093 (2019).
Google Scholar
Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).
Google Scholar
Doran, J.W., Parkin, T.B. Quantitative indicators of soil quality: a minimum data set. in Methods for Assessing Soil Quality (eds. Doran, J.W., Jones, A.J.). 25–37 (Soil Science Society of America, 1996).
Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887 (2005).
Google Scholar
Andriani, G. F. & Walsh, N. An example of the effects of anthropogenic changes on natural environment in the Apulian karst (southern Italy). Environ. Geol. 58, 313–325 (2009).
Google Scholar
Bisantino, T., Pizzo, V., Polemio, M. & Gentile, F. Analysis of the flooding event of October 22–23, 2005 in a small basin in the province of Bari (Southern Italy). J. Agric. Eng. 531, 197–204 (2016).
Google Scholar
Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
Tartarino, P. Inventario dei Boschi Spontanei e dei Rimboschimenti delle Provincie BAT e Bari e Stima del Loro Volume Legnoso e della sua Frazione Prelevabile nel Prossimo Ventennio. (Rapporto Tecnico Scientifico, 2011).
Ismail, A. et al. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils. Chem. Biodivers. 11, 150–160 (2014).
Google Scholar
Navarro, A. et al. Feasibility of SRC Species for growing in Mediterranean conditions. Bioenerg. Res. 9, 208–223 (2015).
Google Scholar
Perrino, E. V., Brunetti, G. & Farrag, K. Plant communities in multi-metal contaminated soils: A case study in the National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediat. 16, 871–888 (2014).
Google Scholar
VV AA Perizia Studi per il Riequilibrio Socio-Economico dell’area Interessata dall’invaso sul Torrente Locone. Consorzio Di Bonifica Apulo Lucano (1986).
Lavarra, P. et al. Il Sistema Carta della Natura della Regione Puglia. (ISPRA, Serie Rapporti 204, 2014).
Sparks, D. L. et al. Method of Soil Analysis: Part 3 (American Society of Agronomy Inc, 1996).
Google Scholar
Brink, R. H. Jr., Dubach, P. & Lynch, D. L. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89, 157–166 (1960).
Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).
Google Scholar
García, C., Hernandez, T. & Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 28, 123–134 (1997).
Google Scholar
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
Google Scholar
Gregorich, E. G., Wen, G., Voroney, R. P. & Kachanoski, R. G. Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 22, 1009–1011 (1990).
Google Scholar
Nannipieri, P., Ceccanti, B., Cervelli, S. & Matarese, E. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980).
Google Scholar
Tabatabai, M.A. (1994) Soil enzymes. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (eds. Weaver, R.W. et al.). 775–833 (Soil Science Society of America, Inc., 1996)
Traversa, A., Said-Pullicino, D., D’Orazio, V., Gigliotti, G., & Senesi, N. Properties of humic acids in Mediterranean forest soils (Southern Italy): Influence of different plant covering. Eur. J. For. Res. 130, 1045–1054 (2011)
De Marco, A. et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 51, 1–15 (2012).
Google Scholar
Wei, G. et al. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol. Ecol. 68, 320–328 (2009).
Google Scholar
Schulze, E. D., Gebauer, G., Ziegler, H. & Lange, O. L. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88, 451–455 (1991).
Google Scholar
Zahran, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).
Google Scholar
Veste, M. & Kriebitzsch, W. U. Influence of drought stress on photosynthesis, transpiration, and growth of juvenile black locust (Robinia pseudoacacia L.). Forstarchiv 84, 35–42 (2013).
Nicolescu, V. N. et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 31, 1081–1101 (2020).
Google Scholar
Sposito, G. The Chemistry of Soil (Oxford University Press, 2008).
Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337. https://doi.org/10.1038/s41598-017-01418-8 (2017).
Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).
Google Scholar
Frankenberger, W. T. & Dick, W. A. Relationships between enzyme, activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945–951 (1983).
Google Scholar
Frankenberger, W.T., Tabatabai, M.A. Amidase activity in soils III. Stability and distribution. Soil Sci. Soc. Am. J. 45, 333–338 (1981).
Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018).
Google Scholar
Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L. & Ros, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem. 32, 1877–1883 (2000).
Google Scholar
García-Gil, J. C., Plaza, C., Solker-Rovira, P. & Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913 (2000).
Google Scholar
Insam, H. & Domsch, K. H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15, 177–188 (1988).
Google Scholar
Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 31, 85–91 (2000).
Google Scholar
Uselman, S. M., Qualls, R. G. & Thomas, R. B. A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210, 21–32 (1999).
Google Scholar
De Marco, A., Esposito, F., Berg, B., Zarrelli, A. & Virzo De Santo, A. Litter inhibitory effects on soil microbial biomass activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. Forest 9, 766. https://doi.org/10.3390/f9120766 (2018).
Google Scholar
Haghverdi, K. & Kooch, Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. CATENA 178, 335–344 (2019).
Google Scholar
Anderson, H. T. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).
Google Scholar
Jenkinson, D.S., Ladd, J.N. Microbial biomass in soil: Measurement and turnover. in Soil Biochemistry (eds. Paul, E.A., Ladd, J.N.). 415–471 (Marcel Dekker Inc., 1981)
Source: Ecology - nature.com