in

Effects of diversity on thermal niche variation in bird communities under climate change

  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article 

    Google Scholar 

  • Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article 

    Google Scholar 

  • Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).

    Article 
    ADS 

    Google Scholar 

  • Princé, K. & Zuckerberg, B. Climate change in our backyards: The reshuffling of North America’s winter bird communities. Glob. Change Biol. 21, 572–585 (2015).

    Article 
    ADS 

    Google Scholar 

  • Brotons, L., Jiguet, F., Herando, S. & Lehikoinen, A. Bird communities and climate change. In Effects of Climate Change on Birds (eds Dunn, P. O. & Møller, A. P.) 221–235 (Oxford University Press, 2019).

    Chapter 

    Google Scholar 

  • Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    Article 

    Google Scholar 

  • Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275, 2743–2748 (2008).

    Article 

    Google Scholar 

  • Lehikoinen, A. et al. Wintering bird communities are tracking climate change faster than breeding communities. J. Anim. Ecol. 90, 1085–1095 (2021).

    Article 

    Google Scholar 

  • McNaughton, S. J. Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).

    Article 

    Google Scholar 

  • Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science (80-. ) 294, 804–808 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Article 

    Google Scholar 

  • Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).

    Article 

    Google Scholar 

  • Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).

    Article 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Article 
    CAS 

    Google Scholar 

  • Oksanen, J. et al. Community ecology package vegan, R package version 2.0-7 (2013).

  • Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package (2014).

  • García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. U. S. A. 115, 8400–8405 (2018).

    Article 
    ADS 

    Google Scholar 

  • De Boeck, H. J. et al. Patterns and drivers of biodiversity-stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).

    Article 

    Google Scholar 

  • Fridley, J. D. et al. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).

    Article 
    CAS 

    Google Scholar 

  • Elton, C. S. The Ecology of Invasions by Plants and Animals (Methuen, 1958).

    Book 

    Google Scholar 

  • Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B Biol. Sci. 283, 20152013 (2016).

    Article 

    Google Scholar 

  • Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioǧlu, Ç. H. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).

    Article 

    Google Scholar 

  • Schipper, A. M. et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 22, 3948–3959 (2016).

    Article 
    ADS 

    Google Scholar 

  • Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).

    Article 
    ADS 

    Google Scholar 

  • Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B Biol. Sci. 287, 20192520 (2020).

    Article 

    Google Scholar 

  • Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).

    ADS 

    Google Scholar 

  • Pimm, S. L. & Redfearn, A. The variability of population densities. Nature 334, 613–614 (1988).

    Article 
    ADS 

    Google Scholar 

  • Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316 (2017).

    Article 

    Google Scholar 

  • Sauer, J. R. et al. The first 50 years of the North American Breeding Bird Survey. Condor 119, 576–593 (2017).

    Article 

    Google Scholar 

  • Meehan, T. D., Michel, N. L. & Rue, H. Spatial modeling of Audubon Christmas Bird Counts reveals fine-scale patterns and drivers of relative abundance trends. Ecosphere 10, e020707 (2019).

    Article 
    ADS 

    Google Scholar 

  • Meller, K., Piha, M., Vähätalo, A. V. & Lehikoinen, A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186, 883–893 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lefcheck, J. S. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96, 2973–2983 (2015).

    Article 

    Google Scholar 

  • Alerstam, T. & Högstedt, G. Bird migration and reproduction in relation to habitats for survival and breeding. Scand. J. Ornithol. 13, 25–37 (1982).

    Google Scholar 

  • Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, 1996).

    Google Scholar 

  • Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017139 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).

    Article 

    Google Scholar 

  • Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).

    Article 

    Google Scholar 

  • Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).

    Article 

    Google Scholar 

  • Kokkoris, G. D., Jansen, V. A. A., Loreau, M. & Troumbis, A. Y. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71, 362–371 (2002).

    Article 

    Google Scholar 

  • Vázquez, D. P. & Simberloff, D. Ecological specialization and susceptibility to disturbance: Conjectures and refutations. Am. Nat. 159, 606–623 (2002).

    Article 

    Google Scholar 

  • Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).

    Article 

    Google Scholar 

  • Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).

    Article 
    CAS 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science (80-. ) 345, 401–406 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography (Cop.) 36, 313–322 (2013).

    Article 

    Google Scholar 

  • Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).

    Article 

    Google Scholar 

  • Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl. Acad. Sci. 114, 12976–12981 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pollock, H. S., Brawn, J. D. & Cheviron, Z. A. Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Funct. Ecol. https://doi.org/10.1111/1365-2435.13693 (2020).

    Article 

    Google Scholar 

  • Wu, J. X., Wilsey, C. B., Taylor, L. & Schuurman, G. W. Projected avifaunal responses to climate change across the U.S. National Park System. PLoS ONE 13, 1–18 (2018).

    Google Scholar 

  • Root, T. Environmental factors associated with avian distributional boundaries. J. Biogeogr. 15, 489 (1988).

    Article 

    Google Scholar 

  • Zuckerberg, B. et al. Climatic constraints on wintering bird distributions are modified by urbanization and weather. J. Anim. Ecol. 80, 403–413 (2011).

    Article 

    Google Scholar 

  • Newton, I. The Migration Ecology of Birds (Academic Press Inc., 2008).

    Google Scholar 

  • La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–14 (2021).

    Article 
    ADS 

    Google Scholar 

  • Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).

    Article 
    ADS 

    Google Scholar 

  • Jiguet, F., Brotons, L. & Devictor, V. Community responses to extreme climatic conditions. Curr. Zool. 57, 406–413 (2011).

    Article 

    Google Scholar 

  • Tayleur, C. et al. Swedish birds are tracking temperature but not rainfall: Evidence from a decade of abundance changes. Glob. Ecol. Biogeogr. 24, 859–872 (2015).

    Article 

    Google Scholar 

  • Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).

    Article 

    Google Scholar 

  • Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fischer, J. et al. Functional richness and relative resilience of bird communities in regions with different land use intensities. Ecosystems 10, 964–974 (2007).

    Article 

    Google Scholar 

  • Olivier, T., Thébault, E., Elias, M., Fontaine, B. & Fontaine, C. Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nat. Commun. 11, 1–9 (2020).

    Article 
    ADS 

    Google Scholar 

  • Michel, N. L. et al. Metrics for conservation success: Using the “Bird‐Friendliness Index” to evaluate grassland and aridland bird community resilience across the Northern Great Plains ecosystem. Divers. Distrib. 26, 1687–1702 (2020).

  • National Audubon Society. The Christmas bird count historical results [online]. http://www.christmasbirdcount.org (2019).

  • BirdLife International & NatureServe. Bird species distribution maps of the world. Version 4.0 (2015).

  • Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the world (2020).

  • BirdLife International. IUCN red list for birds. http://www.birdlife.org (2020).

  • De Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009).

    Article 

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article 

    Google Scholar 

  • IUCN. The IUCN red list of threatened species. Version 2019-2. http://www.iucnredlist.org (2019).

  • Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).

    Article 

    Google Scholar 

  • MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).

    Article 
    ADS 

    Google Scholar 

  • Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).

    Article 
    ADS 

    Google Scholar 

  • Julliard, R., Jiguet, F. & Couvet, D. Common birds facing global changes: What makes a species at risk?. Glob. Change Biol. 10, 148–154 (2004).

    Article 
    ADS 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grimm, A. et al. Earlier breeding, lower success: Does the spatial scale of climatic conditions matter in a migratory passerine bird?. Ecol. Evol. 5, 5722–5734 (2015).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    Article 

    Google Scholar 

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 

    Google Scholar 

  • Barnagaud, J. Y. et al. Biogeographical, environmental and anthropogenic determinants of global patterns in bird taxonomic and trait turnover. Glob. Ecol. Biogeogr. 26, 1190–1200 (2017).

    Article 

    Google Scholar 

  • Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article 

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects model (2019).

  • Barton, K. MuMIn: Multi-model inference. R package (2020).

  • R Core Team. R: A language and environment for statistical computing. Version 3.5.3. http://www.r-project.org/ (2019).

  • Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).

    Article 

    Google Scholar 

  • Neutel, A. M., Heesterbeek, J. A. P. & De Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-. ) 296, 1120–1123 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wallach, A. D. et al. Trophic cascades in 3D: Network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).

    Article 

    Google Scholar 

  • Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida)

    The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae