Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).
Google Scholar
Chazdon, R. L. Landscape restoration, natural regeneration, and the forests of the future. mobt 102, 251–257 (2017).
Crouzeilles, R., Lorini, M. L. & Grelle, C. Applying graph theory to design networks of protected areas: using inter-patch distance for regional conservation planning. Natureza Conservaçao Rev. Brasileira de Conservaçao da Natureza 9, 219–224 (2011).
Crouzeilles, R., Lorini, M. L. & Grelle, C. E. V. The importance of using sustainable use protected areas for functional connectivity. Biol. Cons. 159, 450–457 (2013).
Google Scholar
Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).
Google Scholar
O’Farrell, P. J. & Anderson, P. M. Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ. Sustain. 2, 59–65 (2010).
Google Scholar
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
Google Scholar
César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica 53, 496–508 (2021).
Google Scholar
Crouzeilles, R. et al. A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. J. Appl. Ecol. 56, 2675–2686 (2019).
Google Scholar
Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).
Google Scholar
Taylor, P. D., Fahrig, L. & With, K. A. Landscape connectivity: a return to the basics. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 29–43 (Cambridge University Press, 2006).
Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90, 7–19 (2000).
Google Scholar
McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7, e52604 (2012).
Google Scholar
Torrubia, S. et al. Getting the most connectivity per conservation dollar. Front. Ecol. Environ. 12, 491–497 (2014).
Google Scholar
Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).
Google Scholar
Leal-Ramos, D. et al. Forest and connectivity loss drive changes in movement behavior of bird species. Ecography 43, 1203–1214 (2020).
Google Scholar
Pérez-Cárdenas, N. et al. Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. For. Ecol. Manage. 482, 118818 (2021).
Google Scholar
Holl, K. D., Reid, J. L., Chaves-Fallas, J. M., Oviedo-Brenes, F. & Zahawi, R. A. Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. J. Appl. Ecol. 54, 1091–1099 (2017).
Google Scholar
Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R. & Cordell, S. Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restor. Ecol. 19, 470–479 (2011).
Google Scholar
Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).
Google Scholar
Zahawi, R. A., Holl, K. D., Cole, R. J. & Reid, J. L. Testing applied nucleation as a strategy to facilitate tropical forest recovery. J. Appl. Ecol. 50, 88–96 (2013).
Google Scholar
Reid, J. L., Kormann, U., Zarrate-Chary, D., Holl, K. D. & Zahawi, R. A. Predicting toucan-mediated seed dispersal in tropical forest restoration. Ecosphere (In press).
Zahawi, R. A. et al. Proximity and abundance of mother trees affects recruitment patterns in a long-term tropical forest restoration study. Ecography 44,1826–1837 (2021).
Lehouck, V. et al. Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos 118, 1023–1034 (2009).
Google Scholar
Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
Google Scholar
Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Cons. 230, 179–186 (2019).
Google Scholar
Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188, 333–353 (2010).
Google Scholar
Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).
Google Scholar
Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
Google Scholar
Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. & Tosi, J. A. J. Forest environments in tropical life zones: a pilot study (Pergamon Press, 1971).
Zahawi, R. A., Duran, G. & Kormann, U. Sixty-seven years of land-use change in Southern Costa Rica. PLoS ONE 10, e0143554 (2015).
Google Scholar
Holl, K. D. et al. Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15-year study. J. Appl. Ecol. 57, 2316–2328 (2020).
Google Scholar
Reid, J. L., Mendenhall, C. D., Rosales, J. A., Zahawi, R. A. & Holl, K. D. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9, e90573 (2014).
Google Scholar
Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6, e29080 (2011).
Google Scholar
Carrara, E. et al. Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol. Conser. 184, 117–126 (2015).
Google Scholar
Chao, A. & Shen, T. J. Program SPADE (Species Prediction and Diversity Estimation). Program and User’s Guide. (http://chao.stat.nthu.edu.tw, 2010).
Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343 (2011).
Google Scholar
de Souza, R. P. & Válio, I. F. M. Seed size, seed germination, and seedling survival of Brazilian tropical tree species differing in successional status. Biotropica 33, 447–457 (2001).
Google Scholar
Werden, L. K., Holl, K. D., Rosales, J. A., Sylvester, J. M. & Zahawi, R. A. Effects of dispersal- and niche-based factors on tree recruitment in tropical wet forest restoration. Ecol. Appl. 30, e02139 (2020).
Google Scholar
Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. PNAS 113, 14544–14551 (2016).
Google Scholar
Jesus, F. M., Pivello, V. R., Meirelles, S. T., Franco, G. A. D. C. & Metzger, J. P. The importance of landscape structure for seed dispersal in rain forest fragments. J. Veg. Sci. 23, 1126–1136 (2012).
Google Scholar
Galán-Acedo, C., Arroyo-Rodríguez, V., Estrada, A. & Ramos-Fernández, G. Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41, 2027–2037 (2018).
Google Scholar
Pardini, R., de Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Cons. 124, 253–266 (2005).
Google Scholar
Forman, R. T. T. & Godron, M. Landscape ecology. (Wiley, 1986).
QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation, 2016).
Gillies, C. S. & Clair, C. C. S. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. PNAS 105, 19774–19779 (2008).
Google Scholar
Harvey, C. A., Tucker, N. I. & Estrada, A. Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. in Agroforestry and biodiversity conservation in tropical landscapes 261–289 (2004).
Harvey, C. A. et al. Contribution of live fences to the ecological integrity of agricultural landscapes. Agric. Ecosyst. Environ. 111, 200–230 (2005).
Google Scholar
Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
Google Scholar
He, H. S., DeZonia, B. E. & Mladenoff, D. J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecol. 15, 591–601 (2000).
Google Scholar
Radford, J. Q., Bennett, A. F. & Cheers, G. J. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol. Cons. 124, 317–337 (2005).
Google Scholar
Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).
Google Scholar
Holbrook, K. M. Home range and movement patterns of toucans: implications for seed dispersal. Biotropica 43, 357–364 (2011).
Google Scholar
Şekercioğlu, Ç. H. et al. Tropical countryside riparian corridors provide critical habitat and connectivity for seed-dispersing forest birds in a fragmented landscape. J Ornithol 156, 343–353 (2015).
Google Scholar
Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Sub-optimal study design has major impacts on landscape-scale inference. Biol. Conserv. 144, 298–305 (2011).
Google Scholar
McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. (2012).
Jackson, H. B. & Fahrig, L. Are ecologists conducting research at the optimal scale?. Global Ecol. Biogeography 24, 52–63 (2015).
Google Scholar
Jackson, H. B. & Fahrig, L. What size is a biologically relevant landscape?. Landscape Ecol 27, 929–941 (2012).
Google Scholar
McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31, 1161–1175 (2016).
Google Scholar
Huais, P. Y. multifit: an R function for multi-scale analysis in landscape ecology. Landscape Ecol 33, 1023–1028 (2018).
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).
Crawley, M. J. Statistical modelling in the R book. (John Wiley & Sons Ltd., 2007).
Leite, M. de S., Tambosi, L. R., Romitelli, I. & Metzger, J. P. Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Natureza & Conservação 11, 108–118 (2013).
Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. Applied linear statistical models. (McGraw-Hill/Irwin, 1996).
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).
Calcagno, V. & Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Soft. 34, 1–29 (2010).
Google Scholar
Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
Google Scholar
Fagan, M. E., DeFries, R. S., Sesnie, S. E., Arroyo-Mora, J. P. & Chazdon, R. L. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26, 1456–1474 (2016).
Google Scholar
Reid, J. L. & Holl, K. D. Arrival ≠ survival. Restor. Ecol. 21, 153–155 (2013).
Google Scholar
Pejchar, L. et al. Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol. Cons. 141, 536–544 (2008).
Google Scholar
Norden, N. et al. Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. J. Ecol. 95, 507–516 (2007).
Google Scholar
Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661 (2008).
Google Scholar
Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).
Google Scholar
Costa, J. B. P., Melo, F. P. L., Santos, B. A. & Tabarelli, M. Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecologica 39, 61–66 (2012).
Google Scholar
Miguet, P., Jackson, H. B., Jackson, N. D., Martin, A. E. & Fahrig, L. What determines the spatial extent of landscape effects on species?. Landscape Ecol 31, 1177–1194 (2016).
Google Scholar
Source: Ecology - nature.com