in

Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure

  • Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecol. Prog. Ser. 10, 257–263 (1983).

  • Fuhrman, J. A. & Caron D. A. in Manual of Environmental Microbiology (eds Yates, M. V. et al.) 4.2.2–4.2.2.-34 (ASM Press, 2016).

  • Gasol, J. M. & Kirchman, D. L. Microbial Ecology of the Oceans (John Wiley & Sons, 2018).

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hatosy, S. M. et al. Beta diversity of marine bacteria depends on temporal scale. Ecology 94, 1898–1904 (2013).

    Article 

    Google Scholar 

  • Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).

    Article 

    Google Scholar 

  • Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. 103, 13104–13109 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gonzalez, J. M., Sherr, E. B. & Sherr, B. F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56, 583–589 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guixa-Boixereu, N., Vaque, D., Gasol, J. M. & Pedros-Alio, C. Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system. Aquat. Microb. Ecol. 19, 205–213 (1999).

    Article 

    Google Scholar 

  • Šimek, K. et al. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44, 1634–1644 (1999).

    Article 
    ADS 

    Google Scholar 

  • Hewson, I., Vargo, G. & Fuhrman, J. Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment, and nutrient enrichment. Microb. Ecol. 46, 322–336 (2003).

    Article 
    CAS 

    Google Scholar 

  • Schwalbach, M. S., Hewson, I. & Fuhrman, J. A. Viral effects on bacterial community composition in marine plankton microcosms. Aquat. Microb. Ecol. 34, 117–127 (2004).

    Article 

    Google Scholar 

  • Winter, C., Smit, A., Herndl, G. J. & Weinbauer, M. G. Linking bacterial richness with viral abundance and prokaryotic activity. Limnol. Oceanogr. 50, 968–977 (2005).

    Article 
    ADS 

    Google Scholar 

  • Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).

    Article 
    CAS 

    Google Scholar 

  • Suzuki, S. et al. Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters. J. Oceanogr. 73, 383–395 (2017).

    Article 
    CAS 

    Google Scholar 

  • Milici, M. et al. Diversity and community composition of particle‐associated and free‐living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol. Oceanogr. 62, 1080–1095 (2017).

    Article 
    ADS 

    Google Scholar 

  • D’ambrosio, L., Ziervogel, K., MacGregor, B., Teske, A. & Arnosti, C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 8, 2167–2179 (2014).

    Article 

    Google Scholar 

  • Rieck, A., Herlemann, D. P., Jürgens, K. & Grossart, H.-P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297 (2015).

    Article 

    Google Scholar 

  • Yung, C.-M., Ward, C. S., Davis, K. M., Johnson, Z. I. & Hunt, D. E. Insensitivity of diverse and temporally variable particle-associated microbial communities to bulk seawater environmental parameters. Appl. Environ. Microbiol. 82, 3431–3437 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    Article 
    CAS 

    Google Scholar 

  • Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).

    Article 
    CAS 

    Google Scholar 

  • Crespo, B. G., Pommier, T., Fernández‐Gómez, B. & Pedrós‐Alió, C. Taxonomic composition of the particle‐attached and free‐living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2, 541–552 (2013).

    Article 
    CAS 

    Google Scholar 

  • Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).

  • Yeh, Y. C. et al. Comprehensive single‐PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ. Microbiol. 23, 3240–3250 (2021).

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Article 
    CAS 

    Google Scholar 

  • Needham, D. M. et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 12, 2417 (2018).

    Article 
    CAS 

    Google Scholar 

  • McNichol, J., Berube, P. M., Biller, S. J. & Fuhrman, J. A. Evaluating and improving small subunit rRNA PCR primer coverage for bacteria, archaea, and eukaryotes using metagenomes from global ocean surveys. Msystems 6, e00565–00521 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chow, C. E. T. & Fuhrman, J. A. Seasonality and monthly dynamics of marine myovirus communities. Environ. Microbiol. 14, 2171–2183 (2012).

    Article 

    Google Scholar 

  • Filée, J., Tétart, F., Suttle, C. A. & Krisch, H. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl Acad. Sci. 102, 12471–12476 (2005).

    Article 
    ADS 

    Google Scholar 

  • Pagarete, A. et al. Strong seasonality and interannual recurrence in marine myovirus communities. Appl. Environ. Microbiol. 79, 6253–6259 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Comeau, A. M. & Krisch, H. M. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Mol. Biol. Evolution 25, 1321–1332 (2008).

    Article 
    CAS 

    Google Scholar 

  • Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013).

    Article 
    CAS 

    Google Scholar 

  • Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629 (2017).

    Article 

    Google Scholar 

  • Ahlgren, N. A., Perelman, J. N., Yeh, Y. C. & Fuhrman, J. A. Multi‐year dynamics of fine‐scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom‐up factors. Environ. Microbiol. 21, 2948–2963 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 1–20 (2017).

    Article 

    Google Scholar 

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    Article 

    Google Scholar 

  • Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2020).

    Article 
    CAS 

    Google Scholar 

  • Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, (2015).

  • Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).

    Article 
    ADS 

    Google Scholar 

  • Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).

    Google Scholar 

  • Martiny, A. C., Tai, A. P., Veneziano, D., Primeau, F. & Chisholm, S. W. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832 (2009).

    Article 

    Google Scholar 

  • Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    Article 
    ADS 

    Google Scholar 

  • Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

    Article 
    ADS 

    Google Scholar 

  • Traving, S. J. et al. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun. Biol. 4, 1–12 (2021).

    Article 

    Google Scholar 

  • Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).

    Article 
    ADS 

    Google Scholar 

  • Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 

    Google Scholar 

  • Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).

    Article 
    CAS 

    Google Scholar 

  • Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873 (2005).

    Article 
    CAS 

    Google Scholar 

  • Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).

    Article 

    Google Scholar 

  • Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. elife 5, e11888 (2016).

    Article 

    Google Scholar 

  • Unfried, F. et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 12, 2894–2906 (2018).

    Article 
    CAS 

    Google Scholar 

  • Francis, T. B. et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 15, 2336–2350 (2021).

  • Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Article 

    Google Scholar 

  • Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. 111, 7813–7818 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thingstad, T. F., Pree, B., Giske, J. & Våge, S. What difference does it make if viruses are strain-, rather than species-specific? Front. Microbiol. 6, 320 (2015).

    Article 

    Google Scholar 

  • Prokopowich, C. D., Gregory, T. R. & Crease, T. J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48–50 (2003).

    Article 
    CAS 

    Google Scholar 

  • Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).

    Article 
    CAS 

    Google Scholar 

  • Sintes, E. & Del Giorgio, P. A. Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front. Microbiol. 5, 453 (2014).

    Article 

    Google Scholar 

  • Del Giorgio, P. A. et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 1169–1179 (1996).

    Article 
    ADS 

    Google Scholar 

  • Andersson, A., Larsson, U. & Hagström, Å. Size-selective grazing by a microflagellate on pelagic bacteria. Marine Ecol. Prog. Ser. 33, 51–57 (1986).

  • Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).

    Article 
    CAS 

    Google Scholar 

  • Baltar, F. et al. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. ISME J. 10, 568–581 (2016).

    Article 

    Google Scholar 

  • Suzuki, M. T. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20, 261–272 (1999).

    Article 

    Google Scholar 

  • Yokokawa, T. & Nagata, T. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl. Environ. Microbiol. 71, 6799–6807 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evolution 4, 1111–1119 (2013).

    Article 

    Google Scholar 

  • Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).

    Article 
    CAS 

    Google Scholar 

  • Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).

    Article 
    CAS 

    Google Scholar 

  • Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl Acad. Sci. 107, 16184–16189 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Larkin, A. A. et al. Persistent El Niño driven shifts in marine cyanobacteria populations. PloS ONE 15, e0238405 (2020).

    Article 
    CAS 

    Google Scholar 

  • Arandia‐Gorostidi, N. et al. Warming the phycosphere: differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396 (2020).

    Article 

    Google Scholar 

  • Arandia‐Gorostidi, N., Huete‐Stauffer, T. M., Alonso‐Sáez L, G. & Morán, X. A. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ. Microbiol. 19, 4493–4505 (2017).

    Article 

    Google Scholar 

  • Fagan, A. J., Moreno, A. R. & Martiny, A. C. Role of ENSO conditions on particulate organic matter concentrations and elemental ratios in the Southern California Bight. Front. Mar. Sci. 6, 386 (2019).

    Article 

    Google Scholar 

  • Chang, C. W. et al. Reconstructing large interaction networks from empirical time series data. Ecol. Lett. 24, 2763–2774 (2021).

    Article 

    Google Scholar 

  • Lie, A. A., Kim, D. Y., Schnetzer, A. & Caron, D. A. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California. Aquat. Microb. Ecol. 70, 93–110 (2013).

    Article 

    Google Scholar 

  • Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. MSystems 3, e00023–00018 (2018).

    Article 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article 
    CAS 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 

    Google Scholar 

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D579–D604 (2013).

    Google Scholar 

  • Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, (2017).

  • Decelle, J. et al. Phyto REF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).

    Article 
    CAS 

    Google Scholar 

  • Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    Article 
    ADS 

    Google Scholar 

  • Hill, M. O. & Gauch, H. G. J. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58 (1980).

  • Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).

    Article 

    Google Scholar 

  • Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Manufacturing a cleaner future

    MIT community in 2022: A year in review