Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecol. Prog. Ser. 10, 257–263 (1983).
Fuhrman, J. A. & Caron D. A. in Manual of Environmental Microbiology (eds Yates, M. V. et al.) 4.2.2–4.2.2.-34 (ASM Press, 2016).
Gasol, J. M. & Kirchman, D. L. Microbial Ecology of the Oceans (John Wiley & Sons, 2018).
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).
Google Scholar
Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).
Google Scholar
Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).
Google Scholar
Hatosy, S. M. et al. Beta diversity of marine bacteria depends on temporal scale. Ecology 94, 1898–1904 (2013).
Google Scholar
Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).
Google Scholar
Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. 103, 13104–13109 (2006).
Google Scholar
Gonzalez, J. M., Sherr, E. B. & Sherr, B. F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56, 583–589 (1990).
Google Scholar
Guixa-Boixereu, N., Vaque, D., Gasol, J. M. & Pedros-Alio, C. Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system. Aquat. Microb. Ecol. 19, 205–213 (1999).
Google Scholar
Šimek, K. et al. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44, 1634–1644 (1999).
Google Scholar
Hewson, I., Vargo, G. & Fuhrman, J. Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment, and nutrient enrichment. Microb. Ecol. 46, 322–336 (2003).
Google Scholar
Schwalbach, M. S., Hewson, I. & Fuhrman, J. A. Viral effects on bacterial community composition in marine plankton microcosms. Aquat. Microb. Ecol. 34, 117–127 (2004).
Google Scholar
Winter, C., Smit, A., Herndl, G. J. & Weinbauer, M. G. Linking bacterial richness with viral abundance and prokaryotic activity. Limnol. Oceanogr. 50, 968–977 (2005).
Google Scholar
Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).
Google Scholar
Suzuki, S. et al. Comparison of community structures between particle-associated and free-living prokaryotes in tropical and subtropical Pacific Ocean surface waters. J. Oceanogr. 73, 383–395 (2017).
Google Scholar
Milici, M. et al. Diversity and community composition of particle‐associated and free‐living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol. Oceanogr. 62, 1080–1095 (2017).
Google Scholar
D’ambrosio, L., Ziervogel, K., MacGregor, B., Teske, A. & Arnosti, C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 8, 2167–2179 (2014).
Google Scholar
Rieck, A., Herlemann, D. P., Jürgens, K. & Grossart, H.-P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297 (2015).
Google Scholar
Yung, C.-M., Ward, C. S., Davis, K. M., Johnson, Z. I. & Hunt, D. E. Insensitivity of diverse and temporally variable particle-associated microbial communities to bulk seawater environmental parameters. Appl. Environ. Microbiol. 82, 3431–3437 (2016).
Google Scholar
Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).
Google Scholar
Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).
Google Scholar
Crespo, B. G., Pommier, T., Fernández‐Gómez, B. & Pedrós‐Alió, C. Taxonomic composition of the particle‐attached and free‐living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2, 541–552 (2013).
Google Scholar
Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).
Yeh, Y. C. et al. Comprehensive single‐PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ. Microbiol. 23, 3240–3250 (2021).
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
Google Scholar
Needham, D. M. et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 12, 2417 (2018).
Google Scholar
McNichol, J., Berube, P. M., Biller, S. J. & Fuhrman, J. A. Evaluating and improving small subunit rRNA PCR primer coverage for bacteria, archaea, and eukaryotes using metagenomes from global ocean surveys. Msystems 6, e00565–00521 (2021).
Google Scholar
Chow, C. E. T. & Fuhrman, J. A. Seasonality and monthly dynamics of marine myovirus communities. Environ. Microbiol. 14, 2171–2183 (2012).
Google Scholar
Filée, J., Tétart, F., Suttle, C. A. & Krisch, H. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl Acad. Sci. 102, 12471–12476 (2005).
Google Scholar
Pagarete, A. et al. Strong seasonality and interannual recurrence in marine myovirus communities. Appl. Environ. Microbiol. 79, 6253–6259 (2013).
Google Scholar
Comeau, A. M. & Krisch, H. M. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Mol. Biol. Evolution 25, 1321–1332 (2008).
Google Scholar
Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013).
Google Scholar
Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629 (2017).
Google Scholar
Ahlgren, N. A., Perelman, J. N., Yeh, Y. C. & Fuhrman, J. A. Multi‐year dynamics of fine‐scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom‐up factors. Environ. Microbiol. 21, 2948–2963 (2019).
Google Scholar
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 1–20 (2017).
Google Scholar
Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
Google Scholar
Ignacio-Espinoza, J. C., Ahlgren, N. A. & Fuhrman, J. A. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 5, 265–271 (2020).
Google Scholar
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, (2015).
Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).
Google Scholar
Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
Google Scholar
Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).
Martiny, A. C., Tai, A. P., Veneziano, D., Primeau, F. & Chisholm, S. W. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832 (2009).
Google Scholar
Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).
Google Scholar
Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).
Google Scholar
Traving, S. J. et al. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun. Biol. 4, 1–12 (2021).
Google Scholar
Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).
Google Scholar
Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).
Google Scholar
Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
Google Scholar
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).
Google Scholar
Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873 (2005).
Google Scholar
Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).
Google Scholar
Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).
Google Scholar
Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. elife 5, e11888 (2016).
Google Scholar
Unfried, F. et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 12, 2894–2906 (2018).
Google Scholar
Francis, T. B. et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 15, 2336–2350 (2021).
Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).
Google Scholar
Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. 111, 7813–7818 (2014).
Google Scholar
Thingstad, T. F., Pree, B., Giske, J. & Våge, S. What difference does it make if viruses are strain-, rather than species-specific? Front. Microbiol. 6, 320 (2015).
Google Scholar
Prokopowich, C. D., Gregory, T. R. & Crease, T. J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48–50 (2003).
Google Scholar
Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).
Google Scholar
Sintes, E. & Del Giorgio, P. A. Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front. Microbiol. 5, 453 (2014).
Google Scholar
Del Giorgio, P. A. et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 1169–1179 (1996).
Google Scholar
Andersson, A., Larsson, U. & Hagström, Å. Size-selective grazing by a microflagellate on pelagic bacteria. Marine Ecol. Prog. Ser. 33, 51–57 (1986).
Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).
Google Scholar
Baltar, F. et al. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. ISME J. 10, 568–581 (2016).
Google Scholar
Suzuki, M. T. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20, 261–272 (1999).
Google Scholar
Yokokawa, T. & Nagata, T. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl. Environ. Microbiol. 71, 6799–6807 (2005).
Google Scholar
Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evolution 4, 1111–1119 (2013).
Google Scholar
Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).
Google Scholar
Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).
Google Scholar
Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).
Google Scholar
Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl Acad. Sci. 107, 16184–16189 (2010).
Google Scholar
Larkin, A. A. et al. Persistent El Niño driven shifts in marine cyanobacteria populations. PloS ONE 15, e0238405 (2020).
Google Scholar
Arandia‐Gorostidi, N. et al. Warming the phycosphere: differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396 (2020).
Google Scholar
Arandia‐Gorostidi, N., Huete‐Stauffer, T. M., Alonso‐Sáez L, G. & Morán, X. A. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ. Microbiol. 19, 4493–4505 (2017).
Google Scholar
Fagan, A. J., Moreno, A. R. & Martiny, A. C. Role of ENSO conditions on particulate organic matter concentrations and elemental ratios in the Southern California Bight. Front. Mar. Sci. 6, 386 (2019).
Google Scholar
Chang, C. W. et al. Reconstructing large interaction networks from empirical time series data. Ecol. Lett. 24, 2763–2774 (2021).
Google Scholar
Lie, A. A., Kim, D. Y., Schnetzer, A. & Caron, D. A. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California. Aquat. Microb. Ecol. 70, 93–110 (2013).
Google Scholar
Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. MSystems 3, e00023–00018 (2018).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D579–D604 (2013).
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, (2017).
Decelle, J. et al. Phyto REF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).
Google Scholar
Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).
Google Scholar
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
Google Scholar
Hill, M. O. & Gauch, H. G. J. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58 (1980).
Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).
Google Scholar
Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).
Google Scholar
Source: Ecology - nature.com