Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).
Google Scholar
Sorensen, A., Van Beest, F. M. & Brook, R. K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: A synthesis of knowledge. Prev. Vet. Med. 113, 356–363 (2014).
Google Scholar
Gortázar, C., Acevedo, P., Ruíz-Fons, F. & Vicente, J. Disease risks and overabundance of game species. Eur. J. Wildl. Res. 52, 81–87 (2006).
Google Scholar
Brittingham, M. C. & Temple, S. A. Avian disease and winter bird feeding. Passeng. Pigeon 50, (1998).
Franz, M., Kramer-Schadt, S., Greenwood, A. D. & Courtiol, A. Sickness-induced lethargy can increase host contact rates and pathogen spread in water-limited landscapes. Funct. Ecol. 32, 2194–2204 (2018).
Google Scholar
Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).
Google Scholar
Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B Biol. Sci. 373(1745), 20170090 (2018).
Google Scholar
Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
Google Scholar
Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).
Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Env. 11, 251–259 (2013).
Google Scholar
Buhk, C. et al. Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecol. 18(1), 1–13 (2018).
Google Scholar
Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).
Google Scholar
Williams, N. M. et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 25, 2119–2131 (2015).
Google Scholar
Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).
Google Scholar
Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).
Google Scholar
Alger, S. A., Burnham, P. A. & Brody, A. K. Flowers as viral hot spots: Honey bees (Apis mellifera) unevenly deposit viruses across plant species. PLoS ONE 14(9), e0221800 (2019).
Google Scholar
McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Daughenbaugh, K. F. et al. Metatranscriptome analysis of sympatric bee species identifies bee virus variants and a new virus, andrena-associated bee virus-1. Viruses 13, 291 (2021).
Google Scholar
Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14, e0217822 (2019).
Google Scholar
Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).
Google Scholar
Hayes, S. E., Tuiwawa, M., Stevens, M. I. & Schwarz, M. P. A recipe for weed disaster in islands: A super-generalist native pollinator aided by a ‘Parlourmaid’ plant welcome new arrivals in Fiji. Biol. Invasions 21, 1643–1655 (2019).
Google Scholar
Levenson, H. & Tarpy, D. R. Pollinator community response to planted pollinator habitat in agroecosystems over time. Authorea https://doi.org/10.22541/au.164191433.37143936/v1 (2022).
Google Scholar
Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).
Google Scholar
Genersch, E., Yue, C., Fries, I. & De Miranda, J. R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 91, 61–63 (2006).
Google Scholar
Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 21, 363–371 (2019).
Google Scholar
Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613 (2019).
Google Scholar
Gisder, S. et al. Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. Appl. Environ. Microbiol. 86(12), e00629-20 (2020).
Google Scholar
Tehel, A., Streicher, T., Tragust, S. & Paxton, R. J. Experimental infection of bumblebees with honeybee-associated viruses: No direct fitness costs but potential future threats to novel wild bee hosts. R. Soc. Open Sci. 7(7), 200480 (2020).
Google Scholar
Reynaldi, F. J., Sguazza, G. H., Albicoro, F. J., Pecoraro, M. R. & Galosi, C. M. First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. Braz. J. Biol. 73, 797–800 (2013).
Google Scholar
Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLoS ONE 11(12), e0168456 (2016).
Google Scholar
Melathopoulos, A. et al. Viruses of managed alfalfa leafcutting bees (Megachille rotundata Fabricus) and honey bees (Apis mellifera L.) in Western Canada: Incidence, impacts, and prospects of cross-species viral transmission. J. Invertebr. Pathol. 146, 24–30 (2017).
Google Scholar
Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).
Google Scholar
Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10(1), 1–8 (2020).
Google Scholar
Dalmon, A. et al. Possible spillover of pathogens between bee communities foraging on the same floral resource. Insects 12(2), 122 (2021).
Google Scholar
Kojima, Y. et al. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey Bees in Japan. Microb. Ecol. 62, 895–906 (2011).
Google Scholar
Graystock, P. et al. The Trojan hives: Pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215 (2013).
Google Scholar
Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).
Google Scholar
Evison, S. E. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7(1), e30641 (2012).
Google Scholar
Graystock, P., Goulson, D. & Hughes, W. O. H. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).
Google Scholar
Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282(1813), 20151371 (2015).
Google Scholar
Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J. Invertebr. Pathol. 153, 147–155 (2018).
Google Scholar
Singh, R. et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5(12), e14357 (2010).
Google Scholar
Peng, W. et al. Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii. Apidologie 42, 650–658 (2011).
Google Scholar
Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240 (2013).
Google Scholar
Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).
Google Scholar
Gamboa, V. et al. Bee pathogens found in Bombus atratus from Colombia: A case study. J. Invertebr. Pathol. 129, 36–39 (2015).
Google Scholar
Radzevičiūtė, R. et al. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 146, 14–23 (2017).
Google Scholar
Murray, E. A. et al. Viral transmission in honey bees and native bees, supported by a global black queen cell virus phylogeny. Environ. Microbiol. 21, 972–983 (2019).
Google Scholar
Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. Viruses 12, 13–15 (2020).
Google Scholar
Olgun, T., Everhart, S. E., Anderson, T. & Wu-Smart, J. Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. PLoS ONE 15(6), e0234431 (2020).
Google Scholar
Fearon, M. L. & Tibbetts, E. A. Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. Ecology 102(5), e03305 (2021).
Google Scholar
Sokół, R., Michalczyk, M. & Michołap, P. Preliminary studies on the occurrence of honeybee pathogens in the national bumblebee population. Ann. Parasitol. 64, 385–390 (2018).
Google Scholar
Bravi, M. E. et al. Wild bumble bees (Hymenoptera: Apidae: Bombini) as a potential reservoir for bee pathogens in northeastern Argentina. J. Apic. Res. 58, 710–713 (2019).
Google Scholar
Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 1–9 (2019).
Google Scholar
Li, J. et al. Cross-species infection of deformed wing virus poses a new threat to pollinator conservation. J. Econ. Entomol. 104, 732–739 (2011).
Google Scholar
Sachman-Ruiz, B., Narváez-Padilla, V. & Reynaud, E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol. Invasions 17, 2043–2053 (2015).
Google Scholar
Jones, L. J., Ford, R. P., Schilder, R. J. & López-Uribe, M. M. Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. J. Invertebr. Pathol. 185, 107667 (2021).
Google Scholar
Dolezal, A. G. et al. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 11(11), e0166190 (2016).
Google Scholar
Mazzei, M. et al. First detection of replicative deformed wing virus (DWV) in Vespa velutina nigrithorax. Bull. Insectology 71, 211–216 (2018).
Plischuk, S. et al. Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae: Bombus spp.) from highlands in Bolivia and Peru. Stud. Neotrop. Fauna Environ. Stud. https://doi.org/10.1080/01650521.2020.1743551 (2020).
Google Scholar
McMahon, D. P. et al. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).
Google Scholar
Bailes, E. J. et al. First detection of bee viruses in hoverfly (syrphid) pollinators. Biol. Lett. 14(2), 20180001 (2018).
Google Scholar
Pritchard, Z. A. et al. Do viruses from managed honey bees (Hymenoptera: Apidae) endanger wild bees in native prairies?. Environ. Entomol. 50, 455–466 (2021).
Google Scholar
Danforth, B. N., Mitchell, P. L. & Packer, L. Mitochondrial DNA differentiation between two cryptic Halictus (Hymenoptera: Halictidae) species. Ann. Entomol. Soc. Am. 91, 387–391 (1998).
Google Scholar
Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).
Google Scholar
Antúnez, K. et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11, 2284–2290 (2009).
Google Scholar
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108, 662–667 (2011).
Google Scholar
Leite, G. M., Magan, N. & Medina, A. Comparison of different bead-beating RNA extraction strategies: An optimized method for filamentous fungi. J. Microbiol. Methods 88, 413–418 (2012).
Google Scholar
Simms, D., Cizdziel, P. & Chomczynski, P. TRIzol: A new reagent for optimal single-step isolation of RNA. Focus (Madison) 15, 99–102 (1993).
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), 1–12 (2002).
Google Scholar
Mwalili, S. M., Lesaffre, E. & Declerck, D. The zero-inflated negative binomial regression model with correction for misclassification: An example in caries research. Stat. Methods Med. Res. 17, 123–139 (2008).
Google Scholar
R Core Team. R: Language and Environment for Statistical Computing. R Foundation for Statistical Computer (2018). Available at: https://www.r-project.org/.
Jackman, S. et al. Package ‘pscl’. (2020).
Canty, A. & Ripley, B. Package ‘boot’. (2021).
Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222 (2020).
Google Scholar
National Heritage Program. Species/Community Search. National Heritage Program: Natural and Cultural Resources (2021). Available at: https://ncnhp.org/data/speciescommunity-search.
Hatfield, R. et al. IUCN Assessments for North American Bombus spp. (2014).
Sersic, A. N., Masco, M. & Noy-Meir, I. Natural hybridization between species of Calceolaria with different pollination syndromes in southern Patagonia, Argentina. Plant Syst. Evol. 230, 111–124 (2001).
Google Scholar
Otti, O. & Schmid-Hempel, P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124 (2007).
Google Scholar
Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: Interactions with laboratory environment. Science 284(5420), 1670–1672 (1999).
Google Scholar
Wahlsten, D. et al. Different data from different labs: Lessons from studies of gene-environment interaction. J. Nuerobiol. 54, 283–311 (2003).
Google Scholar
Brownie, J. et al. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25(16), 3235–3241 (1997).
Google Scholar
Boncristiani, H. F. et al. In vitro infection of pupae with israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE 8(9), e73429 (2013).
Google Scholar
Source: Ecology - nature.com