in

Effects of seawater sulfur starvation and enrichment on Gracilaria gracilis growth and biochemical composition

  • Gao, Y., Schofield, O. M. & Leustek, T. Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol. 123, 1087–1096 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, C.-W., Walker, M. E., Fedrizzi, B., Gardner, R. C. & Jiranek, V. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Res. 17, 058 (2017).

    Google Scholar 

  • Kopriva, S., Calderwood, A., Weckopp, S. C. & Koprivova, A. Plant sulfur and big data. Plant Sci. 241, 1–10 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Shibagaki, N. & Grossman, A. The state of sulfur metabolism in algae: From ecology to genomics. In Sulfur Metabolism in Phototrophic Organisms (eds Hell, C. D. R. et al.) 231–267 (Springer, 2008).

    Google Scholar 

  • Fakhraee, M. & Katsev, S. Organic sulfur was integral to the Archean sulfur cycle. Nat. Commun. 10, 1–8 (2019).

    CAS 

    Google Scholar 

  • Ho, T. Y. et al. The elemental composition of some marine phytoplankton 1. J. Phycol. 39, 1145–1159 (2003).

    CAS 

    Google Scholar 

  • Jørgensen, B. B. Unravelling the sulphur cycle of marine sediments. Environ. Microbiol. 21, 3533–3538 (2019).

    PubMed 

    Google Scholar 

  • El Mahrad, B. et al. Social-environmental analysis for the management of coastal lagoons in North Africa. Front. Environ. Sci. 8, 37 (2020).

    Google Scholar 

  • Srarfi, F. Etude géochimique et état de pollution de la lagune de Bizerte. These de doctorat, Univ. Tunis el Manar 122 (2007).

  • FAO. La Situation Mondiale Des Pêches et de L’aquaculture 2020 (Food & Agriculture Organisation, 2020).

    Google Scholar 

  • Soto, D. & Wurmann, C. The Future of Ocean Governance and Capacity Development 379–384 (Brill Nijhoff, 2019).

    Google Scholar 

  • Ran, W. et al. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour. Technol. 291, 121894 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Aikawa, S. et al. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol. J. 10, 886–898 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Klok, A., Lamers, P., Martens, D., Draaisma, R. & Wijffels, R. Edible oils from microalgae: Insights in TAG accumulation. Trends Biotechnol. 32, 521–528 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Y. et al. Enhancing carbohydrate productivity of Chlorella sp. AE10 in semi-continuous cultivation and unraveling the mechanism by flow cytometry. Appl. Biochem. 185, 419–433 (2018).

    CAS 

    Google Scholar 

  • Rodríguez, M. C., Matulewicz, M. C., Noseda, M., Ducatti, D. & Leonardi, P. I. Agar from Gracilaria gracilis (Gracilariales, Rhodophyta) of the Patagonic coast of Argentina-Content, structure and physical properties. Biores. Technol. 100, 1435–1441 (2009).

    Google Scholar 

  • Lee, W.-K. et al. Factors affecting yield and gelling properties of agar. J. Appl. Phycol. 29, 1527–1540 (2017).

    Google Scholar 

  • Fethi, M. & Ghedifa, A. B. Optimum ranges of combined abiotic factor for Gracilaria gracilis aquaculture. J. Appl. Phycol. 31, 3025–3040 (2019).

    Google Scholar 

  • Friedlander, M. Inorganic nutrition in pond cultivated Gracilaria conferta (Rhodophyta): Nitrogen, phosphate and sulfate. J. Appl. Phycol. 13, 279–286 (2001).

    CAS 

    Google Scholar 

  • Lee, W.-K., Namasivayam, P. & Ho, C.-L. Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib, Malaysia. J. Appl. Phycol. 26, 1791–1799 (2014).

    CAS 

    Google Scholar 

  • Carfagna, S. et al. Impact of sulfur starvation in autotrophic and heterotrophic cultures of the extremophilic microalga Galdieria phlegrea (Cyanidiophyceae). Plant Cell Physiol. 57, 1890–1898 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Collén, P. N., Camitz, A., Hancock, R. D., Viola, R. & Pedersén, M. Effect of nutrient deprivation and resupply on metabolites and enzymes related to carbon allocation in gracilaria tenuistipitata (rhodophyta) 1. J. Phycol. 40, 305–314 (2004).

    Google Scholar 

  • Collier, J. L. & Grossman, A. A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J. 13, 1039–1047 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richaud, C., Zabulon, G., Joder, A. & Thomas, J.-C. Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J. Bacteriol. 183, 2989–2994 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd, A. G., Dodgson, K. S. & Rose, F. A. Infrared studies on sulphate esters I. Polysaccharide sulphates. Biochim. Biophys. Acta 46, 108–115 (1961).

    CAS 
    PubMed 

    Google Scholar 

  • Kawachi, M. & Noël, M.-H. Sterilization and sterile technique. In Algal Culturing Techniques (ed. Anderson, R. A.) 65–81 (Academic Press, 2005).

    Google Scholar 

  • Harrison, P. J. & Berges, J. A. Marine culture media. In Algal Culturing Techniques (ed. Anderson, R. A.) 21–34 (Academic Press, 2005).

    Google Scholar 

  • Guiry, M. & Cunningham, E. Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23, 357–367 (1984).

    Google Scholar 

  • Kolmert, Å., Wikström, P. & Hallberg, K. B. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods 41, 179–184 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Destombe, C., Godin, J., Nocher, M., Richerd, S. & Valero, M. In Fourteenth International Seaweed Symposium (eds Brown, M. T. & Lahaye, M.) 131–137 (Springer, 1993).

    Google Scholar 

  • Rueness, J. & Tananger, T. In Eleventh International Seaweed Symposium (eds Bird, C. J. & Ragan, M. A.) 303–307 (Springer, 1984).

    Google Scholar 

  • Shea, R. & Chopin, T. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina. J. Appl. Phycol. 19, 27–32 (2007).

    CAS 

    Google Scholar 

  • Dawes, C., Orduna-Rojas, J. & Robledo, D. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl. Phycol. 10, 419–425 (1998).

    Google Scholar 

  • Yaphe, W. & Arsenault, G. Improved resorcinol reagent for the determination of fructose, and of 3, 6-anhydrogalactose in polysaccharides. Anal. Biochem. 13, 143–148 (1965).

    CAS 

    Google Scholar 

  • Mensi, F., Ksouri, J., Seale, E., Romdhane, M. S. & Fleurence, J. A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function. J. Appl. Phycol. 24, 915–926 (2012).

    CAS 

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS 

    Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Sörbo, B. Sulfate: Turbidimetric and nephelometric methods. Methods Enzymol. 143, 3–6 (1987).

    PubMed 

    Google Scholar 

  • Redmond, S., Green, L., Yarish, C., Kim, J. & Neefus, C. New England Seaweed Culture Handbook (University of Connecticut Sea Garent, 2014).

    Google Scholar 

  • Kakita, H. & Kamishima, H. Effects of environmental factors and metal ions on growth of the red alga Gracilaria chorda Holmes (Gracilariales, Rhodophyta). J. Appl. Phycol. 18, 469–474 (2006).

    CAS 

    Google Scholar 

  • Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).

    Google Scholar 

  • Shpigun, L. K., Kolotyrkina, I. Y. & Zolotov, Y. A. Experience with flow-injection analysis in marine chemical research. Anal. Chim. Acta 261, 307–314 (1992).

    CAS 

    Google Scholar 

  • Cosano, J., de Castro, M. & Valcarcel, M. Flow injection analysis of water. Part 1: Automatic preconcentration determination of sulphate, ammonia and iron (II)/iron (III). J. Autom. Chem. 15, 141–146 (1993).

    CAS 

    Google Scholar 

  • Van Staden, J. & Taljaard, R. Determination of sulphate in natural waters and industrial effluents by sequential injection analysis. Anal. Chim. Acta 331, 271–280 (1996).

    Google Scholar 

  • Petersen, S. P. & Ahring, B. K. Analysis of sulfate in sewage sludge using ion chromatographic techniques. J. Microbiol. Methods 12, 225–230 (1990).

    CAS 

    Google Scholar 

  • Rand, M., Greenberg, A., Taras, K. & Franson, M. Standard Methods for the Examination of Water and Waste Water (American Public Health Association, 1975).

    Google Scholar 

  • Wanner, G., Henkelmann, G., Schmidt, A. & Köst, H.-P. Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301 an ultrastructural, morphometrical, and biochemical comparison. Zeitschrift Naturforschung C 41, 741–750 (1986).

    CAS 

    Google Scholar 

  • Molloy, F. & Bolton, J. The effect of season and depth on the growth of Gracilaria gracilis at Lüderitz, Namibia. Bot. Mar. 39, 407–414 (1996).

    Google Scholar 

  • Mensi, F., Nasraoui, S., Bouguerra, S., Ben Ghedifa, A. & Chalghaf, M. Effect of lagoon and sea water depth on Gracilaria gracilis growth and biochemical composition in the northeast of Tunisia. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  • Mensi, F., Ksouri, J., Hammami, W. & Romdhane, M. État des connaissances et perspectives de recherches sur la culture de Gracilariales (Gracilaria et Gracilariopsis): Application a la lagune de Bizerte. Bull. Inst. Natn. Scien. Tech. Mer Salammbô 41, 101–119 (2014).

    Google Scholar 

  • Sugimoto, K., Sato, N. & Tsuzuki, M. Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 581, 4519–4522 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Cakmak, T. et al. Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered 3, 343–346 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostaszewska-Bugajska, M., Rychter, A. M. & Juszczuk, I. M. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. J. Plant Physiol. 186, 25–38 (2015).

    PubMed 

    Google Scholar 

  • Zhang, L. et al. Sulfur deficiency-induced glucosinolate catabolism attributed to two β-glucosidases, BGLU28 and BGLU30, is required for plant growth maintenance under sulfur deficiency. Plant Cell Physiol. 61, 803–813 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant biol. 62, 157–184 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).

    Google Scholar 

  • Collier, J. L. & Grossman, A. R. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 174, 4718–4726. https://doi.org/10.1128/jb.174.14.4718-4726.1992 (1992).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaur, H. et al. Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition. Biochimie 93, 175–186. https://doi.org/10.1016/j.biochi.2010.09.008 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Said, R. B. et al. Effects of depth and initial fragment weights of Gracilaria gracilis on the growth, agar yield, quality, and biochemical composition. J. Appl. Phycol. 30, 2499–2512 (2018).

    Google Scholar 

  • Bird, K. T. Agar production and quality from Gracilaria sp. strain G—16: Effects of environmental factors. Bot. Mar. 31, 33–38 (1988).

    Google Scholar 

  • Cote, G. & Hanisak, M. Production and properties of native agars from Gracilaria tikvahiae and other red algae. Bot. Mar. 29, 359–366 (1986).

    CAS 

    Google Scholar 

  • Lahaye, M. & Yaphe, W. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, Rhodophyta). Carbohydr. Polym. 8, 285–301 (1988).

    CAS 

    Google Scholar 

  • Yaphe, W. Eleventh International Seaweed Symposium 171–174 (Springer, 1984).

    Google Scholar 

  • Duckworth, M., Hong, K. & Yaphe, W. The agar polysaccharides of Gracilaria species. Carbohydr. Res. 18, 1–9 (1971).

    CAS 

    Google Scholar 

  • Rotem, A., Roth-Bejerano, N. & Arad, S. Effect of controlled environmental conditions on starch and agar contents of Gracilaria sp. (Rhodophyceae) 1. J. Phycol. 22, 117–121 (1986).

    CAS 

    Google Scholar 

  • Arad, S. M., Lerental, Y. B. & Dubinsky, O. Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour. Technol. 42, 141–148 (1992).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Kerry Emanuel: A climate scientist and meteorologist in the eye of the storm

    Better living through multicellular life cycles