in

Effects of sediment flushing operations versus natural floods on Chinook salmon survival

  • Morris, G. L. & Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use (McGraw Hill Professional, 1998).

    Google Scholar 

  • White, R. Evacuation of Sediments from Reservoirs, HR Wallingford, http://www.thomastelford.com (Thomas Telford Publishing, 2001).

  • Kondolf, G. M. et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2, 256–280 (2014).

    ADS 
    Article 

    Google Scholar 

  • Schleiss, A. J., Franca, M. J., Juez, C. & De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 54, 595–614 (2016).

    Article 

    Google Scholar 

  • Dahal, S., Crosato, A., Omer, A. Y. A. & Lee, A. A. Validation of model-based optimization of reservoir sediment releases by dam removal. J. Water Resour. Plan. Manag. 147, 04021033 (2021).

    Article 

    Google Scholar 

  • Williams, G. P. & Wolman, M. G. Effects of dams and reservoirs on surface water hydrology—Changes in rivers downstream from dams. Natl. Water Summ. Hydrol. Events Surf. Water Resour. 2300, 83 (1986).

    Google Scholar 

  • Toffolon, M., Siviglia, A. & Zolezzi, G. Thermal wave dynamics in rivers affected by hydropeaking. Water Resour. Res. https://doi.org/10.1029/2009WR008234 (2010).

    Article 

    Google Scholar 

  • Stewart, G. B. Patterns and Processes of Sediment Transport Following Sediment-Filled Dam Removal in Gravel Bed Rivers. (PhD Thesis, Oregon State University, Oregon USA, 2006).

  • Major, J. J. et al. Geomorphic Response of the Sandy River, Oregon, to Removal of Marmot Dam. U.S. Geological Survey Professional Paper, 64p https://pubs.usgs.gov/pp/1792/ (2012).

  • Espa, P., Castelli, E., Crosa, G. & Gentili, G. Environmental effects of storage preservation practices: Controlled flushing of fine sediment from a small hydropower reservoir. Environ. Manag. 52, 261–276 (2013).

    ADS 
    Article 

    Google Scholar 

  • Tena, A., Vericat, D. & Batalla, R. J. Suspended sediment dynamics during flushing flows in a large impounded river (the lower River Ebro). J Soils Sediments 14, 2057–2069 (2014).

    Article 

    Google Scholar 

  • Antoine, G., Camenen, B., Jodeau, M., Némery, J. & Esteves, M. Downstream erosion and deposition dynamics of fine suspended sediments due to dam flushing. J. Hydrol. 585, 124763 (2020).

    Article 

    Google Scholar 

  • Power, M., Dietrich, W. & Finlay, J. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environ. Manag. 20, 887–895 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Clarke, K. D., Pratt, T. C., Randall, R. G., Scruton, D. A. & Smokorowski, K. E. Validation of the flow management pathway: Effects of altered flow on fish habitat and fishes downstream from a hydropower dam. Can. Tech. Rep. Fish. Aquat. Sci. 2784, 111 (2008).

    Google Scholar 

  • Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205 (2010).

    Article 

    Google Scholar 

  • Juracek, K. E. The aging of America’s reservoirs: In-reservoir and downstream physical changes and habitat implications. JAWRA J. Am. Water Resour. Assoc. 51, 168–184 (2015).

    ADS 
    Article 

    Google Scholar 

  • Brandt, S. A. & Swenning, J. Sedimentological and geomorphological effects of reservoir flushing: the Cachí Reservoir, Costa Rica, 1996. Geogr. Ann. Ser. B 81, 391–407 (1999).

    Article 

    Google Scholar 

  • Grant, G. E., Schmidt, J. C. & Lewis, S. L. A geological framework for interpreting downstream effects of dams on rivers. In Water Science and Application (eds O’Connor, J. E. & Grant, G. E.) 203–219 (American Geophysical Union, 2003). https://doi.org/10.1029/007WS13.

    Chapter 

    Google Scholar 

  • Petts, G. E. & Gurnell, A. M. Dams and geomorphology: Research progress and future directions. Geomorphology 71, 27–47 (2005).

    ADS 
    Article 

    Google Scholar 

  • Newcombe, C. & MacDonald, D. D. Effects of suspended sediments on aquatic ecosystems. J. N. Am. J. Fish. Manag. 11, 72–82 (1991).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8675(1991)0112.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8675%281991%29011%3C0072%3AEOSSOA%3E2.3.CO%3B2″ aria-label=”Article reference 20″>Article 

    Google Scholar 

  • Gilles, B. & Le Bail, P.-Y. Does light have an influence on fish growth?. Aquaculture 177, 129–152 (1999).

    Article 

    Google Scholar 

  • Carolli, M., Bruno, M. C., Siviglia, A. & Maiolini, B. Responses of benthic invertebrates to abrupt changes of temperature in flume simulations. River Res. Appl. 28, 678–691 (2012).

    Article 

    Google Scholar 

  • Bennel, D. H., Connor, W. P. & Eaton, C. A. Substrate composition and emergence success of fall Chinook salmon in the Snake river. Northwest Sci. 77, 93–99 (2003).

    Google Scholar 

  • Jensen, D. W., Steel, E. A., Fullerton, A. H. & Pess, G. R. Impact of fine sediment on egg-to-fry survival of Pacific salmon: A meta-analysis of published studies. Rev. Fish. Sci. 17, 348–359 (2009).

    CAS 
    Article 

    Google Scholar 

  • Bjornn, T. C. & Reiser, D. W. Habitat requirements of salmonids in streams. Am. Fish. Soc. Spec. Publ. 19, 83–138 (1991).

    Google Scholar 

  • ASCE, N. Sediment and aquatic habitat in river systems. J. Hydraul. Eng. 118, 669–687 (1992).

    Article 

    Google Scholar 

  • Louhi, P., Mäki-Petäys, A. & Erkinaro, J. Spawning habitat of Atlantic salmon and brown trout: General criteria and intragravel factors. River Res. Appl. 24, 330–339 (2008).

    Article 

    Google Scholar 

  • Baxter, C. V. & Hauer, F. R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 57, 1470–1481 (2000).

    Article 

    Google Scholar 

  • Peviani, M., Saccardo, I., Crosato, A. & Gentili, G. Natural and artificial floods connected with river habitat. in Ecohydraulics 2000. Proceedings
    of the 2nd International Symposium on Habitat Hydraulics, IAHR- Que´bec,
    Canada,
    vol. B 175–186 (1996).

  • Crosa, G., Castelli, E., Gentili, G. & Espa, P. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquat. Sci. 72, 85 (2009).

    Article 
    CAS 

    Google Scholar 

  • Espa, P., Crosa, G., Gentili, G., Quadroni, S. & Petts, G. Downstream ecological impacts of controlled sediment flushing in an Alpine valley river: A case study. River Res. Appl. 31, 931–942 (2014).

    Article 

    Google Scholar 

  • Lee, A. Modelling Salmon Spawning Habitat Response to Dam Removal. (MSc Thesis, IHE Delft, the Netherlands, 2017).

  • van Oorschot, M. et al. Impact of dam operations on the habitat suitability of Plecoglossus altivelis downstream of the Funagira dam, Japan. In River Flow 2020 (eds Uijttewaal et al.) (2020 Taylor & Francis Group, CRC Press, 2020).

    Google Scholar 

  • Newcombe, C. P. Suspended sediments in acquatic ecosystem: III effects as a function of concentration and duration of exposure. (1994).

  • Newcombe, C. P. & Jensen, J. O. T. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manag. 16, 693–727 (1996).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8675(1996)0162.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8675%281996%29016%3C0693%3ACSSAFA%3E2.3.CO%3B2″ aria-label=”Article reference 35″>Article 

    Google Scholar 

  • Hubert, W. A., Helzner, R. S., Lee, L. A. & Nelson, P. C. Habitat suitability index models and instream flow suitability curves: Arctic grayling riverine populations. Western Energy and Land Use Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, US Department of Interior, Biological report 82 (10.110) (1985).

  • Raleigh, R. F., Miller, W. J. & Nelson, P. C. Habitat suitability index models and instream flow suitability curves: Chinook salmon. Fish and Wildlife Service, US Department of the Interior, Biological Report 82(10.122) www.nwrc.usgs.gov/wdb/pub/hsi/hsi-122.pdf (1986).

  • Fisher, S., Gray, L., Grimm, N. & Busch, D. E. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. https://doi.org/10.2307/2937346 (1982).

    Article 

    Google Scholar 

  • Lapointe, M., Eaton, B., Driscoll, S. & Latulippe, C. Modelling the probability of salmonid egg pocket scour due to floods. Can. J. Fish. Aquat. Sci. 57, 11 (2000).

    Article 

    Google Scholar 

  • Baldwin, D. & Mitchell, A. M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: A synthesis. River Res. Appl. 16, 457–467 (2000).

    Google Scholar 

  • Kowalski, D. The effects of stream flow on the trout populations of the Gunnison river. (2007).

  • Konard, C. P. Effects of urban development on floods. U.S. Geological Survey—Water Resources Fact Sheet 076-03 https://pubs.usgs.gov/fs/fs07603/ (2016).

  • Miller, J. D. & Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362 (2017).

    Article 

    Google Scholar 

  • Poff, N. L. & Ward, J. V. Implications of streamflow variability and predictability for lotic community structure: A regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci. 46, 1805–1818 (1989).

    Article 

    Google Scholar 

  • George, S. D., Baldigo, B. P., Smith, A. J. & Robinson, G. R. Effects of extreme floods on trout populations and fish communities in a Catskill Mountain river. Freshw. Biol. 60, 2511–2522 (2015).

    Article 

    Google Scholar 

  • Carlson, A. K., Fincel, M. J., Longhenry, C. M. & Graeb, B. D. Effects of historic flooding on fishes and aquatic habitats in a Missouri river delta. J. Freshw. Ecol. 31, 271–288 (2016).

    Article 

    Google Scholar 

  • Ríos-Pulgarín, M. I., Barletta, M. & Mancera-Rodríguez, N. J. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream. J. Fish Biol. 89, 102–130 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • United States Federal energy regulatory Commission (FERC). Application for Surrender of License, Bull Run Hydropower Project: Environmental Impact Statement. https://catalog.hathitrust.org/Record/100940309 (2003).

  • Squier Associates. Sandy river sediment study, Bull Run Hydroelectric Project. (2000).

  • Taylor, B. Salmon and Steelhead Runs and Related Events of the Clackamas River Basin–A Historical Perspective. Portland General Electric Company, 64 https://www.eaglecreekfriends.org/links-references (1999).

  • Trimble, D. E. Geology of Portland, Oregon, and Adjacent Areas. Bulletin U.S. G.P.O. https://pubs.er.usgs.gov/publication/b1119. https://doi.org/10.3133/b1119. (1963).

  • Sandy River basin Working Group. Sandy River basin aquatic habitat restoration strategy: An anchor habitat-based prioritization of restoration opportunities Oregon Trout. Portland, Oregon. Preprint at https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5325660.pdf (2007).

  • Lee, A., Crosato, A., Omer, A. Y. A. & Bregoli, F. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal. in AGU Fall meeting (2017).

  • Healey, M. C. Life history of Chinook salmon (Oncorhynchus tshawytscha). Pacific Salmon Life Histories 311–394 (1991).

  • Bourret, S. L., Caudill, C. C. & Keefer, M. L. Diversity of juvenile Chinook salmon life history pathways. Rev. Fish. Biol. Fish. 26, 375–403 (2016).

    Article 

    Google Scholar 

  • Alderdice, D. & Velsen, F. Relation between temperature and incubation time for eggs of Chinook salmon (Oncorhynchus tshawytscha). J. Fish. Res. Board Can. 35, 69–75 (1978).

    Article 

    Google Scholar 

  • Seattle Aquarium. Redd alert: Our Chinook salmon are hatching! |. Seattle Aquarium https://www.seattleaquarium.org/blog/redd-alert-our-chinook-salmon-are-hatching (2015).

  • Whitman, L., Cannon, B. & Hart, S. Spring Chinook salmon in the Willamette and Sandy rivers: Sandy river basin Spring Chinook salmon spawning surveys. Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem, Oregon 97302, 30 https://odfw.forestry.oregonstate.edu/willamettesalmonidrme/sites/default/files/2016_sandy_basin_spring_chinook_spawning_survey.pdf (2016).

  • Cramer, S. P. Fish and habitat surveys of the lower Sandy and Bull Run rivers. Report of SP Cramer&Associates, Inc. to Portland General Electric and Portland Water bureau, Portland, Oregon (1998).

  • Westley, P. A. Documentation of en route mortality of summer chum salmon in the Koyukuk river, Alaska and its potential linkage to the heatwave of 2019. Ecol. Evol. 10, 10296–10304 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bowerman, T. E., Keefer, M. L. & Caudill, C. C. Elevated stream temperature, origin, and individual size influence Chinook salmon prespawn mortality across the Columbia River Basin. Fish. Res. 237, 105874 (2021).

    Article 

    Google Scholar 

  • Beechie, T. J. et al. Process-based principles for restoring river ecosystems. Bioscience 60, 209–222 (2010).

    Article 

    Google Scholar 

  • Crosato, A. & Saleh, M. S. Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf. Process. Landf. 36, 711–720 (2011).

    ADS 
    Article 

    Google Scholar 

  • Schuurman, F., Marra, W. A. & Kleinhans, M. G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 118, 2509–2527 (2013).

    ADS 
    Article 

    Google Scholar 

  • Singh, U., Crosato, A., Giri, S. & Hicks, M. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers. Adv. Water Resour. 104, 127–144 (2017).

    ADS 
    Article 

    Google Scholar 

  • van ledden, M. Sand-Mud Segregation in Estuaries and Tidal Basins. (PhD Thesis, University of Technology Delft, 2003).

  • Kandiah, A. Fundamental Aspects of Surface Erosion of Cohesive Soils. (University of California, Davis, 1974).

  • Partheniades, E. Cohesive Sediments in Open Channels: Erosion, Transport and Deposition (Butterworth-Heinemann, 2009).

    Google Scholar 

  • Jiang, J. An Examination of Estuarine Lutocline Dynamics. (PhD Thesis, University of Florida, USA, 1999).

  • Exner, F. M. Uber die wechselwirkung zwischen wasser und geschiebe in flussen (about the interaction between water and bedload in rivers). Akad. Wiss. Wien Math. Naturwiss. Kl. 134, 165–204 (1925).

    Google Scholar 

  • Ikeda, S. Incipient motion of sand particles on side slopes. J. Hydraul. Div. 108, 95–114 (1982).

    Article 

    Google Scholar 

  • Bagnold, R. A. An approach to the sediment transport problem from general physics. Physiographic and hydraulic studies of rivers in US Geological Survey Professional Paper, vol. 422 I, 231–291 (1966).

  • Stillwater Sciences. Numerical modeling of sediment transport in the Sandy river, Oregon following removal of Marmot dam. (2000).

  • Ashida, K. & Michiue, M. Study on hydraulic resistance and bed transport rate in alluvial stream. Proc. Jpn. Soc. Civ. Eng. 201, 59–69 (1972).

    Article 

    Google Scholar 

  • Panthi, M. Generation and Fate of Fine Sediment from Dam Flushing. (MSc Thesis, IHE Delft, Institute for Water Education, the Netherlands, 2020).

  • Meyer-Peter, E. & Müller, R. Formulas for bed-load transport. in IAHSR 2nd Meeting, Stockholm, Appendix 2 (IAHR, 1948).

  • Podolak, C. & Pittman, S. Marmot Dam Removal Geomorphic Monitoring & Modeling Project: Final Report. Sandy river basin watershed council. (2011).

  • Keith, M. K. Reservoir Evolution Following the Removal of Marmot Dam on the Sandy River, Oregon. (MSc Thesis, Portland State University, Oregon, USA, 2012).

  • Redding, J. M., Schreck, C. B. & Everest, F. H. Physiological effects on coho salmon and steelhead of exposure to suspended solids. Trans. Am. Fish. Soc. 116, 737–744 (1987).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(1987)1162.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%281987%29116%3C737%3APEOCSA%3E2.0.CO%3B2″ aria-label=”Article reference 79″>Article 

    Google Scholar 

  • Lisle, T. E. Sediment transport and resulting deposition in spawning gravels, north coastal California. Water Resour. Res. 25, 1303–1319 (1989).

    ADS 
    Article 

    Google Scholar 

  • Pitlick, J. & Wilcock, P. Relations between streamflow, sediment transport, and aquatic habitat in regulated rivers. In Geomorphic Processes and Riverine Habitat (eds Dorava, J. M. et al.) 185–198 (American Geophysical Union, 2001).

    Chapter 

    Google Scholar 

  • Toupin, L. Freshwater Habitats: Life in Freshwater Ecosystems. (Franklin Watts, Watts Library, 2005).

  • Bovee, K. D. A guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. IFIP No. 12. FWS/OBS https://pubs.er.usgs.gov/publication/fwsobs82_26 (1982).

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Vadas, R. L. & Orth, D. J. Formulation of habitat suitability models for stream fish guilds: Do the standard methods work?. Trans. Am. Fish. Soc. 130, 217–235 (2001).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(2001)1302.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%282001%29130%3C0217%3AFOHSMF%3E2.0.CO%3B2″ aria-label=”Article reference 85″>Article 

    Google Scholar 

  • Moir, H. J., Gibbins, C. N., Soulsby, C. & Youngson, A. F. PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: Testing the influence of habitat suitability indices on model output. River Res. Appl. 21, 1021–1034 (2005).

    Article 

    Google Scholar 

  • Hauer, C. et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sustain. Energy Rev. 98, 40–55 (2018).

    Article 

    Google Scholar 

  • Koizumi, I., Kanazawa, Y. & Tanaka, Y. The fishermen were right: Experimental evidence for tributary refuge hypothesis during floods. Zool. Sci. 30, 375–379 (2013).

    Article 

    Google Scholar 

  • Quadroni, S. et al. Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology 9, 1276–1288 (2016).

    Article 

    Google Scholar 

  • Bond, M. H., Nodine, T. G., Beechie, T. J. & Zabel, R. W. Estimating the benefits of widespread floodplain reconnection for Columbia river Chinook salmon. Can. J. Fish. Aquat. Sci. 76, 1212–1226 (2019).

    Article 

    Google Scholar 

  • Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. Int. Ver. Theor. Angew. Limnol. Verh. 29, 123–136 (2005).

    Google Scholar 


  • Source: Ecology - nature.com

    Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series

    3Q: How MIT is working to reduce carbon emissions on our campus