Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).
Google Scholar
Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).
Google Scholar
Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).
Google Scholar
Boers, N., Marwan, N. & Barbosa, H. M. J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 49, 41489 (2017).
Google Scholar
Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S. & Kloster, S. Multiple stable states of tree cover in a global land surface model due to a fire–vegetation feedback. Geophys. Res. Lett. 43, 6324–6331 (2016).
Google Scholar
Abis, B. & Brovkin, V. Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences 14, 511–527 (2017).
Google Scholar
Bastiaansen, R. et al. Multistability of model and real dryland ecosystems through spatial self-organization. Proc. Natl Acad. Sci. USA 115, 11256–11261 (2018).
Google Scholar
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Google Scholar
Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
Google Scholar
Folke, C. et al. Regime shifts, resilience, in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
Google Scholar
Arani, B. M., Carpenter, S. R., Lahti, L., van Nes, E. H. & Scheffer, M. Exit time as a measure of ecological resilience. Science 372, eaay4895 (2021).
Google Scholar
Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. der Phys. 322, 549–560 (1905).
Google Scholar
Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).
Google Scholar
Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966).
Google Scholar
Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation–dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008).
Google Scholar
Groth, A., Ghil, M., Hallegatte, S. & Dumas, P. The role of oscillatory modes in US business cycles. J. Bus. Cycle Meas. Anal. https://doi.org/10.1787/jbcma-2015-5jrs0lv715wl (2015).
Groth, A., Dumas, P., Ghil, M. & Hallegatte, S. in Extreme Events: Observations, Modeling, and Economics (eds Chavez, M. et al.) 343–360 (Wiley, 2015).
Gritsun, A. & Branstator, G. Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci. 64, 2558–2575 (2007).
Google Scholar
Majda, A. J., Abramov, R. & Gershgorin, B. High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl Acad. Sci. USA 107, 581–586 (2010).
Google Scholar
Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).
Google Scholar
Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).
Google Scholar
van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).
Google Scholar
Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
Google Scholar
Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007).
Google Scholar
Dakos, V., Van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).
Google Scholar
Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
Google Scholar
Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).
Google Scholar
Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).
Google Scholar
Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).
Google Scholar
Rypdal, M. Early-warning signals for the onsets of Greenland interstadials and the Younger Dryas-preboreal transition. J. Clim. 29, 4047–4056 (2016).
Google Scholar
Boers, N. Early-warning signals for Dansgaard–Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).
Lenton, T. M., Livina, V. N., Dakos, V., van Nes, E. H. & Scheffer, M. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Phil. Trans. R. Soc. A 370, 1185–204 (2012).
Google Scholar
Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).
Google Scholar
De Keersmaecker, W. et al. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob. Change Biol. 20, 2149–2161 (2014).
Google Scholar
De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).
Google Scholar
Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).
Google Scholar
Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (vodca). Earth Syst. Sci. Data 12, 177–196 (2020).
Google Scholar
Boulton, C. A., Lenton, T. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).
Google Scholar
Feng, Y. et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Commun. Earth Environ. 2, 88 (2021).
Google Scholar
Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05 Deg Version 006 (NASA, 2015).
Wang, W., Chen, Y., Becker, S. & Liu, B. Linear trend detection in serially dependent hydrometeorological data based on a variance correction Spearman rho method. Water 7, 7045–7065 (2015).
Google Scholar
Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).
Google Scholar
Box, E. O., Holben, B. N. & Kalb, V. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80, 71–89 (1989).
Google Scholar
Liu, L., Zhang, Y., Wu, S., Li, S. & Qin, D. Water memory effects and their impacts on global vegetation productivity and resilience. Sci. Rep. 8, 2962 (2018).
Google Scholar
Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).
Google Scholar
Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. Stl: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
Donner, R. et al. Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability. Nonlinear Process. Geophys. 19, 95–111 (2012).
Google Scholar
Smith, T. & Bookhagen, B. Changes in seasonal snow water equivalent distribution in high mountain Asia (1987 to 2009). Sci. Adv. 4, e1701550 (2018).
Google Scholar
Smith, T., Boers, N. & Traxl, D. Global vegetation resilience estimation. Zenodo https://doi.org/10.5281/zenodo.5816934 (2022).
Rousseau, D.-D. et al. (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records—a paleosol perspective. Quat. Sci. Rev. 196, 99–113 (2017).
Google Scholar
Boulton, C. A. & Lenton, T. M. A new method for detecting abrupt shifts in time series. F1000Research 8, 746 (2019).
Google Scholar
Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).
Google Scholar
Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).
Google Scholar
Djikstra, H. Nonlinear Climate Dynamics (Cambridge Univ. Press, 2013).
Google Scholar
Kendall, M. G. Rank Correlation Methods (Griffin, 1948).
Source: Ecology - nature.com