in

Energy allocation shifts from sperm production to self-maintenance at low temperatures in male bats

  • 1.

    Thomas, D. W., Fenton, M. B. & Barclay, R. M. R. Social-behavior of the little brown bat, myotis-lucifugus. 1. mating-behavior. Behav. Ecol. Sociobiol. 6, 129–136. https://doi.org/10.1007/bf00292559 (1979).

    Article 

    Google Scholar 

  • 2.

    Weiner, J. Physiological limits to sustainable energy budgets in birds and mammals-ecological implications. Trends Ecol. Evol. 7, 384–388. https://doi.org/10.1016/0169-5347(92)90009-z (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Becker, N. I., Encarnação, J. A., Kalko, E. K. V. & Tschapka, M. The effects of reproductive state on digestive efficiency in three sympatric bat species of the same guild. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162, 386–390. https://doi.org/10.1016/j.cbpa.2012.04.021 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Becker, N. I., Encarnação, J. A., Tschapka, M. & Kalko, E. K. V. Energetics and life-history of bats in comparison to small mammals. Ecol. Res. 28, 249–258. https://doi.org/10.1007/s11284-012-1010-0 (2012).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Ruf, T. & Bieber, C. Physiological, behavioral, and life-history adaptations to environmental fluctuations in the edible dormouse. Front. Physiol. https://doi.org/10.3389/fphys.2020.00423 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Scholander, P. F., Hock, R., Walters, V. & Irving, L. Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol. Bull. 99, 259–271. https://doi.org/10.2307/1538742 (1950).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Geiser, F. & Ruf, T. Hibernation versus daily torpor in mammals and birds-physiological variables and classification of torpor patterns. Physiol. Zool. 68, 935–966. https://doi.org/10.1086/physzool.68.6.30163788 (1995).

    Article 

    Google Scholar 

  • 8.

    Aschoff, J. Thermal conductance in mammals and birds-its dependence on body size and circadian phase. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 69, 611–619. https://doi.org/10.1016/0300-9629(81)90145-6 (1981).

    Article 

    Google Scholar 

  • 9.

    McNab, B. K. The economics of temperature regulation in neotropical bats. Comp. Biochem. Physiol 31, 227–268. https://doi.org/10.1016/0010-406X(69)91651-X (1969).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Speakman, J. R. & Thomas, D. W. in Bat ecology (ed Thomas H. Kunz and M. Brock Fenton) 430–490 (University of Chicago Press, 2003).

  • 11.

    Wang, L. C. H. & Wolowyk, M. W. Torpor in mammals and birds. Can. J. Zool.-Rev. Can. Zool. 66, 133–137. https://doi.org/10.1139/z88-017 (1988).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 (2004).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 13.

    Geiser, F. & Masters, P. Torpor in relation to reproduction in the mulgara, dasycercus-cristicauda (dasyuridae, marsupialia). J. Therm. Biol. 19, 33–40. https://doi.org/10.1016/0306-4565(94)90007-8 (1994).

    Article 

    Google Scholar 

  • 14.

    Wojciechowski, M. S., Jefimow, M. & Tęgowska, E. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 828–840. https://doi.org/10.1016/j.cbpa.2006.06.039 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926. https://doi.org/10.1111/brv.12137 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Tuttle, M. D. Population ecology of the gray bat (Myotis grisescens): factors Iifluencing growth and survival of newly volant young. Ecology 57, 587–595. https://doi.org/10.2307/1936443 (1976).

    Article 

    Google Scholar 

  • 17.

    Racey, P. A. & Swift, S. M. Variations in gestation length in a colony of Pipistrelle bats (Pipistrellus pipistrellus) from year to year. J. Reprod. Fertil. 61, 123–129. https://doi.org/10.1530/jrf.0.0610123 (1981).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Audet, D. & Fenton, M. B. Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera, Vespertilionidae)-a field study. Physiol. Zool. 61, 197–204. https://doi.org/10.1086/physzool.61.3.30161232 (1988).

    Article 

    Google Scholar 

  • 19.

    Barnes, B. M., Kretzmann, M., Licht, P. & Zucker, I. The influence of hibernation on testis growth and spermatogenesis in the golden mantled ground squirrel, Spermophilus lateralis. Biol. Reprod. 35, 1289–1297. https://doi.org/10.1095/biolreprod35.5.1289 (1986).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Gagnon, M. F., Lafleur, C., Landry-Cuerrier, M., Humphries, M. M. & Kimmins, S. Torpor expression is associated with differential spermatogenesis in hibernating eastern chipmunks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R455–R465. https://doi.org/10.1152/ajpregu.00328.2019 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    McLean, J. A. & Speakman, J. R. Energy budgets of lactating and non-reproductive Brown Long-Eared Bats (Plecotus auritus) suggest females use compensation in lactation. Funct. Ecol. 13, 360–372. https://doi.org/10.1046/j.1365-2435.1999.00321.x (1999).

    Article 

    Google Scholar 

  • 22.

    Wilde, C. J., Knight, C. R. & Racey, P. A. Influence of torpor on milk protein composition and secretion in lactating bats. J. Exp. Zool. 284, 35–41. https://doi.org/10.1002/(sici)1097-010x(19990615)284:1%3c35::aid-jez6%3e3.0.co;2-z (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Racey, P. A. The prolonged storage and survival of spermatozoa in Chiroptera. J. Reprod. Fertil. 56, 391–402. https://doi.org/10.1530/jrf.0.0560391 (1979).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Racey, P. A. The reproductive cycle in male noctule bats, Nyctalus noctula. J. Reprod. Fertil. 41, 169–182. https://doi.org/10.1530/jrf.0.0410169 (1974).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Gustafson, A. W. Male reproductive patterns in hibernating bats. J. Reprod. Fertil. 56, 317–0 (1979).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Komar, E., Dechmann, D. K. N., Fasel, N. J., Zegarek, M. & Ruczyński, I. Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats. J. Exp. Biol. https://doi.org/10.1242/jeb.214825 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Wilkinson, G. S. & McCracken, G. F. in Bat ecology (eds Thomas H. Kunz & M. Brock Fenton) 128–155 (University of Chicago Press, 2003).

  • 28.

    Pescovitz, O. H., Srivastava, C. H., Breyer, P. R. & Monts, B. A. Paracrine control of spermatogenesis. Trends Endocrinol. Metab. 5, 126–131. https://doi.org/10.1016/1043-2760(94)90094-9 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Sharpe, R. M., Kerr, J. B., McKinnell, C. & Millar, M. Temporal relationship between androgen-dependent changes in the volume of seminiferous tubule fluid, lumen size and seminiferous tubule protein secretion in rats. J. Reprod. Fertil. 101, 193–198 (1994).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Becker, N. I., Tschapka, M., Kalko, E. K. V. & Encarnacao, J. A. Balancing the energy budget in free ranging male Myotis daubentonii bats. Physiol. Biochem. Zool. 86, 361–369. https://doi.org/10.1086/670527 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Entwistle, A. C., Racey, P. A. & Speakman, J. R. The reproductive cycle and determination of sexual maturity in male brown long eared bats, Plecotus auritus (Chiroptera: Vespertilionidae). J. Zool. 244, 63–70. https://doi.org/10.1111/j.1469-7998.1998.tb00007.x (1998).

    Article 

    Google Scholar 

  • 32.

    Fasel, N. J., Kołodziej-Sobocińska, M., Komar, E., Zegarek, M. & Ruczyński, I. Penis size and sperm quality, are all bats grey in the dark?. Curr. Zool. 65, 697–703. https://doi.org/10.1093/cz/zoy094 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Dietz, M. & Kalko, E. K. V. Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentoni. Can. J. Zool.-Rev. Can. Zool. 85, 653–664. https://doi.org/10.1139/z07-045 (2007).

    Article 

    Google Scholar 

  • 34.

    Encarnação, J. A. Spatiotemporal pattern of local sexual segregation in a tree dwelling temperate bat Myotis daubentonii. J. Ethol. 30, 271–278. https://doi.org/10.1007/s10164-011-0323-8 (2012).

    Article 

    Google Scholar 

  • 35.

    Safi, K. & Kerth, G. Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone. Am. Nat. 170, 465–472. https://doi.org/10.1086/520116 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Hałat, Z., Dechmann, D. K. N., Zegarek, M. & Ruczyński, I. Male bats respond to adverse conditions with larger colonies and increased torpor use during sperm production. Mamm. Biol. 22, 2109 (2020).

    Google Scholar 

  • 37.

    Dietz, M. & Horig, A. Thermoregulation of tree dwelling temperate bats-a behavioural adaptation to force live history strategy. Folia Zool. 60, 5–16. https://doi.org/10.25225/fozo.v60.i1.a2.2011 (2011).

    Article 

    Google Scholar 

  • 38.

    Ruczyński, I., Zahorowicz, P., Borowik, T. & Hałat, Z. Activity patterns of two syntopic and closely related aerial-hawking bat species during breeding season in Bialowieza Primaeval Forest. Mammal Res. 62, 65–73. https://doi.org/10.1007/s13364-016-0298-5 (2017).

    Article 

    Google Scholar 

  • 39.

    Jolly, S. E. & Blackshaw, A. W. Prolonged epididymal sperm storage, and the temporal dissociation of testicular and accessory gland activity in the common sheath-tail bat, Taphozous georgianus, of tropical Australia. J. Reprod. Fertil. 81, 205–211. https://doi.org/10.1530/jrf.0.0810205 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Boyles, J. G., Dunbar, M. B., Storm, J. J. & Brack, V. Energy availability influences microclimate selection of hibernating bats. J. Exp. Biol. 210, 4345–4350. https://doi.org/10.1242/jeb.007294 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Ruczyński, I., Hałat, Z., Zegarek, M., Borowik, T. & Dechmann, D. K. N. Camera transects as a method to monitor high temporal and spatial ephemerality of flying nocturnal insects. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13339 (2020).

    Article 

    Google Scholar 

  • 42.

    Safi, K. Social bats: the males’ perspective. J. Mammal. 89, 1342–1350. https://doi.org/10.1644/08-mamm-s-058.1 (2008).

    Article 

    Google Scholar 

  • 43.

    Webb, P. I., Speakman, J. R. & Racey, P. A. The implication of small reductions in body temperature for radiant and convective heat loss in resting endothermic brown long eared bats (Pecotus auritus). J. Therm. Biol. 18, 131–135. https://doi.org/10.1016/0306-4565(93)90026-p (1993).

    Article 

    Google Scholar 

  • 44.

    Boratyński, J. S., Iwińska, K. & Bogdanowicz, W. An intrapopulation heterothermy continuum: notable repeatability of body temperature variation in food deprived yellow necked mice. J. Exp. Biol. 222, 197152. https://doi.org/10.1242/jeb.197152 (2019).

    Article 

    Google Scholar 

  • 45.

    Christian, N. & Geiser, F. To use or not to use torpor? Activity and body temperature as predictors. Naturwissenschaften 94, 483–487. https://doi.org/10.1007/s00114-007-0215-5 (2007).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 46.

    Smith, L. B. & Walker, W. H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 30, 2–13. https://doi.org/10.1016/j.semcdb.2014.02.012 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Macdonald, J. & Harrison, R. G. Effect of low temperatures on rat spermatogenesis. Fertil. Steril. 5, 205–216 (1954).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Fowler, P. A. & Racey, P. A. Relationship between body and testis temperatures in the European hedgehog, Erinaceus europaeus, during hibernation and sexual reactivation. Reproduction 81, 567. https://doi.org/10.1530/jrf.0.0810567 (1987).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Davis, J. R., Firlit, C. F. & Hollinger, M. A. Effect of temperature on incorporation of l-lysine-U-C14 into testicular proteins. Am. J. Physiol. 204, 696–698. https://doi.org/10.1152/ajplegacy.1963.204.4.696 (1963).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    LeVier, R. R. & Spaziani, E. The influence of temperature on steroidogenesis in the rat testis. J. Exp. Zool. 169, 113–120. https://doi.org/10.1002/jez.1401690113 (1968).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Geiser, F. & Brigham, R. M. in Living in a seasonal world (eds Thomas Ruf, Claudia Bieber, Walter Arnold, & Eva Millesi) 109–121 (Springer, 2012).

  • 52.

    Safi, K. Die Zweifarbfledermaus in der Schweiz: Status und Grundlagen zum Schutz. (Haupt Verlag, 2006).

  • 53.

    Hałat, Z., Dechmann, D. K. N., Zegarek, M., Visser, A. F. J. & Ruczyński, I. Sociality and insect abundance affect duration of nocturnal activity of male parti-colored bats. J. Mammal. 99, 1503–1509. https://doi.org/10.1093/jmammal/gyy141 (2018).

    Article 

    Google Scholar 

  • 54.

    Ruczyński, I. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and Leisler’s bats (N-leisleri) in Biaowieza Primeval Forest, Poland. Can. J. Zool. 84, 900–907. https://doi.org/10.1139/z06-060 (2006).

    Article 

    Google Scholar 

  • 55.

    Ruczyński, I. & Bartoń, K. A. Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behav. Ecol. Sociobiol. 74, 63. https://doi.org/10.1007/s00265-020-02840-1 (2020).

    Article 

    Google Scholar 

  • 56.

    Linton, D. M. & Macdonald, D. W. Phenology of reproductive condition varies with age and spring weather conditions in male Myotis daubentonii and Myotis nattereri (Chiroptera: Vespertilionidae). Sci. Rep. 10, 6664. https://doi.org/10.1038/s41598-020-63538-y (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 57.

    Dammhahn, M., Landry-Cuerrier, M., Reale, D., Garant, D. & Humphries, M. M. Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct. Ecol. 31, 866–875. https://doi.org/10.1111/1365-2435.12797 (2017).

    Article 

    Google Scholar 

  • 58.

    Boyles, J. G., Johnson, J. S., Blomberg, A. & Lilley, T. M. Optimal hibernation theory. Mammal. Rev. 50, 91–100. https://doi.org/10.1111/mam.12181 (2020).

    Article 

    Google Scholar 

  • 59.

    Boratyński, J. S., Willis, C. K. R., Jefimow, M. & Wojciechowski, M. S. Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 179, 125–132. https://doi.org/10.1016/j.cbpa.2014.09.035 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Ruczyński, I., Kalko, E. K. V. & Siemers, B. M. The sensory basis of roost finding in a forest bat, Nyctalus noctula. J. Exp. Biol. 210, 3607–3615. https://doi.org/10.1242/jeb.009837 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 61.

    Lovegrove, B. G. Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J. Comp. Physiol. B 179, 451–458. https://doi.org/10.1007/s00360-008-0329-x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 62.

    Willis, C. K. R., Lane, J. E., Liknes, E. T., Swanson, D. L. & Brigham, R. M. Thermal energetics of female big brown bats (Eptesicus fuscus). Can. J. Zool. 83, 871–879. https://doi.org/10.1139/z05-074 (2005).

    Article 

    Google Scholar 

  • 63.

    Willis, C. K. R. An energy-based body temperature threshold between torpor and normothermia for small mammals. Physiol. Biochem. Zool. 80, 643–651. https://doi.org/10.1086/521085 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 64.

    Krutzsch, P. H. in Reproductive Biology of Bats (ed Academic Press) 91–155 (2000).

  • 65.

    Wood, S. N. Generalized Additive Models: An Introduction With R. Vol. 66 (2006).

  • 66.

    Jackman, S. Bayesian Analysis for the Social Sciences. (Wiley, 2009).

  • 67.

    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.2307/1390675 (1998).

    MathSciNet 
    Article 

    Google Scholar 

  • 68.

    Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. v.R package version 1.5.1. (2019).


  • Source: Ecology - nature.com

    3 Questions: What a single car can say about traffic

    The fabrication and assessment of mosquito repellent cream for outdoor protection