Lees, A. C., Attwood, S., Barlow, J. & Phalan, B. Biodiversity scientists must fight the creeping rise of extinction denial. Nat. Ecol. Evol. 4, 1440–1443 (2020).
Google Scholar
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. 2, 775–781 (2018).
Google Scholar
Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
Google Scholar
McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 6219 (2015).
Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122 (2006).
Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).
Google Scholar
Beaumont, N. et al. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Mar. Pollut. Bull. 54, 253–265 (2007).
Google Scholar
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Turpie, J. K. The existence value of biodiversity in South Africa: How interest, experience, knowledge, income and perceived level of threat influence local willingness to pay. Ecol. Econ. 46, 199–216 (2003).
Ruiz-Frau, A., Hinz, H., Edwards-Jones, G. & Kaiser, M. Spatially explicit economic assessment of cultural ecosystem services: Non-extractive recreational uses of the coastal environment related to marine biodiversity. Mar. Policy 38, 90–98 (2013).
Thrush, S. F., Gray, J. S., Hewitt, J. E. & Ugland, K. I. Predicting the effects of habitat homogenization on marine biodiversity. Ecol. Appl. 16, 1636–1642 (2006).
Google Scholar
Gillies, C. L. et al. Australian shellfish ecosystems: Past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).
Google Scholar
Commito, J. A., Como, S., Grupe, B. M. & Dow, W. E. Species diversity in the soft-bottom intertidal zone: Biogenic structure, sediment, and macrofauna across mussel bed spatial scales. J. Exp. Mar. Biol. Ecol. 366, 70–81 (2008).
Tokeshi, M. Species Coexistence: Ecological and Evolutionary Perspectives (Wiley, Hoboken, 2009).
Paul, L. J. A history of the Firth of Thames dredge fishrey for mussels: Use and abuse of a coastal resource. Report No. 94, (Wellington, New Zealand, 2012).
Enderlein, P. & Wahl, M. Dominance of blue mussels versus consumer-mediated enhancement of benthic diversity. J. Sea Res. 51, 145–155 (2004).
Google Scholar
Lejart, M. & Hily, C. Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J. Sea Res. 65, 84–93 (2011).
Google Scholar
Norling, P. & Kautsky, N. Patches of the mussel Mytilus sp. are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquat. Biol. 4, 75–87 (2008).
Norling, P., Lindegarth, M., Lindegarth, S. & Strand, Å. Effects of live and post-mortem shell structures of invasive Pacific oysters and native blue mussels on macrofauna and fish. Mar. Ecol. Prog. Ser. 518, 123–138 (2015).
Google Scholar
McLeod, I., Parsons, D., Morrison, M., Van Dijken, S. & Taylor, R. Mussel reefs on soft sediments: A severely reduced but important habitat for macroinvertebrates and fishes in New Zealand. N. Z. J. Mar. Freshw. Res. 48, 48–59 (2014).
Google Scholar
Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).
zu Ermgassen, P. S., Grabowski, J. H., Gair, J. R. & Powers, S. P. Quantifying fish and mobile invertebrate production from a threatened nursery habitat. J. Appl. Ecol. 53, 596–606 (2016).
Grabowski, J. H. The influence of trophic interactions, habitat complexity, and landscape setting on community dynamics and restoration of oyster reefs. Ph.D., The University of North Carolina at Chapel Hill (2002).
Harding, J. M., Allen, D. M., Haffey, E. R. & Hoffman, K. M. Site fidelity of oyster reef blennies and gobies in saltmarsh tidal creeks. Estuaries Coasts 43, 409–423 (2020).
Google Scholar
Parsons, D. et al. Snapper (Chrysophrys auratus): A review of life history and key vulnerabilities in New Zealand. N. Z. J. Mar. Freshw. Res. 48, 256–283 (2014).
Callier, M. D., Richard, M., McKindsey, C. W., Archambault, P. & Desrosiers, G. Responses of benthic macrofauna and biogeochemical fluxes to various levels of mussel biodeposition: An in situ “benthocosm” experiment. Mar. Pollut. Bull. 58, 1544–1553. https://doi.org/10.1016/j.marpolbul.2009.05.010 (2009).
Google Scholar
Ysebaert, T., Hart, M. & Herman, P. M. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol. Mar. Res. 63, 59–74 (2009).
Google Scholar
Sea, M. A., Thrush, S. F. & Hillman, J. R. Environmental predictors of sediment denitrification rates within restored green-lipped mussel (Perna canaliculus) beds. Mar. Ecol. Prog. Ser. 667, 1–13 (2021).
Google Scholar
Hillman, J. R., O’Meara, T. A., Lohrer, A. M., & Thrush, S. F. Influence of restored mussel reefs on denitrification in
marine sediments. J. Sea Res. 175, 102099 (2021).
Bacheler, N. M. et al. Comparison of trap and underwater video gears for indexing reef fish presence and abundance in the southeast United States. Fish. Res. 143, 81–88 (2013).
Wells, R. D., Boswell, K. M., Cowan, J. H. Jr. & Patterson, W. F. III. Size selectivity of sampling gears targeting red snapper in the northern Gulf of Mexico. Fish. Res. 89, 294–299 (2008).
Emslie, M. J., Cheal, A. J., MacNeil, M. A., Miller, I. R. & Sweatman, H. P. Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ 6, e4886 (2018).
Google Scholar
Piggott, C. V., Depczynski, M., Gagliano, M. & Langlois, T. J. Remote video methods for studying juvenile fish populations in challenging environments. J. Exp. Mar. Biol. Ecol. 532, 151454 (2020).
Dean, W. E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sediment. Res. 44, 242–248 (1974).
Google Scholar
Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12, 343–346 (1967).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).
Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial (2015).
Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to software and statistical methods (2008).
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
Saier, B. Subtidal and intertidal mussel beds (Mytilus edulis L.) in the Wadden Sea: Diversity differences of associated epifauna. Helgol. Mar. Res. 56, 44–50 (2002).
Google Scholar
Peterson, C. H., Grabowski, J. H. & Powers, S. P. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Mar. Ecol. Prog. Ser. 264, 249–264 (2003).
Google Scholar
Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 101, 79–90 (2003).
Norkko, A., Hewitt, J. E., Thrush, S. F. & Funnell, T. Benthic-pelagic coupling and suspension-feeding bivalves: Linking site-specific sediment flux and biodeposition to benthic community structure. Limnol. Oceanogr. 46, 2067–2072 (2001).
Google Scholar
Russell, B. The food and feeding habits of rocky reef fish of north-eastern New Zealand. N. Z. J. Mar. Freshw. Res. 17, 121–145 (1983).
Gillies, C., Creighton, C. & McLeod, I. Shellfish reef habitats: A synopsis to underpin the repair and conservation of Australia’s environmentally, socially and economically important bays and estuaries. Report to the National Environmental Science Programme, Marine Biodiversity Hub, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Townsville, Qld, Australia (2015).
Lenihan, H. S. et al. Cascading of habitat degradation: Oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764–782 (2001).
Connell, S. & Jones, G. The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. J. Exp. Mar. Biol. Ecol. 151, 271–294 (1991).
Usmar, N. Ontogeny and Ecology of Snapper (Pagrus auratus) in an estuary, the Mahurangi Harbour (University of Auckland, 2009).
Willis, T. J. & Anderson, M. J. Structure of cryptic reef fish assemblages: Relationships with habitat characteristics and predator density. Mar. Ecol. Prog. Ser. 257, 209–221 (2003).
Google Scholar
Thompson, S. Homing in a territorial reef fish. Copeia 1983, 832–834 (1983).
Thrush, S. F., Schultz, D., Hewitt, J. E. & Talley, D. Habitat structure in soft-sediment environments and abundance of juvenile snapper Pagrus auratus. Mar. Ecol. Prog. Ser. 245, 273–280 (2002).
Google Scholar
Pickering, H. & Whitmarsh, D. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’debate, the influence of design and its significance for policy. Fish. Res. 31, 39–59 (1997).
Karp, M. A., Seitz, R. D. & Fabrizio, M. C. Faunal communities on restored oyster reefs: Effects of habitat complexity and environmental conditions. Mar. Ecol. Prog. Ser. 590, 35–51 (2018).
Google Scholar
Hanke, M. H., Posey, M. H. & Alphin, T. D. The effects of intertidal oyster reef habitat characteristics on faunal utilization. Mar. Ecol. Prog. Ser. 581, 57–70 (2017).
Google Scholar
Cranfield, H., Rowden, A., Smith, D., Gordon, D. & Michael, K. Macrofaunal assemblages of benthic habitat of different complexity and the proposition of a model of biogenic reef habitat regeneration in Foveaux Strait, New Zealand. J. Sea Res. 52, 109–125 (2004).
Google Scholar
Norling, P. & Kautsky, N. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Mar. Ecol. Prog. Ser. 351, 163–175 (2007).
Google Scholar
Jaunatre, R. et al. New synthetic indicators to assess community resilience and restoration success. Ecol. Indicators 29, 468–477 (2013).
O’Meara, T. A., Hewitt, J. E., Thrush, S. F., Douglas, E. J. & Lohrer, A. M. Denitrification and the role of macrofauna across estuarine gradients in nutrient and sediment loading. Estuaries Coasts 43, 1394–1405. https://doi.org/10.1007/s12237-020-00728-x (2020).
Google Scholar
McCann, L. D. Oligochaete influence on settlement, growth and reproduction in a surface-deposit-feeding polychaete. J. Exp. Mar. Biol. Ecol. 131, 233–253 (1989).
Hope, J. A., Paterson, D. M. & Thrush, S. F. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J. Ecol. 108, 815–830 (2020).
Christianen, M. J. et al. Benthic primary producers are key to sustain the Wadden Sea food web: Stable carbon isotope analysis at landscape scale. Ecology 98, 1498–1512 (2017).
Google Scholar
Commito, J. A. & Dankers, N. M. Dynamics of spatial and temporal complexity in European and North American soft-bottom mussel beds. In Ecological Comparisons of Sedimentary Shores, 39–59 (Springer, Berlin, 2001).
Arribas, L. P., Donnarumma, L., Palomo, M. G. & Scrosati, R. A. Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Mar. Biodivers. 44, 203–211 (2014).
Walles, B., Salvador de Paiva, J., van Prooijen, B. C., Ysebaert, T. & Smaal, A. C. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures. Estuaries Coasts 38, 941–950 (2015).
Tsuchiya, M. & Nishihira, M. Islands of Mytilus edulis as a habitat for small intertidal animals: Effect of Mytilus age structure on the species composition of the associated fauna and community organization. Mar. Ecol. Prog. Ser. 31, 171–178 (1986).
Google Scholar
Craeymeersch, J. A. & Jansen, H. M. Bivalve assemblages as hotspots for biodiversity. In Goods and Services of Marine Bivalves, 275–294 (Springer, Cham, 2019).
Buschbaum, C. et al. Mytilid mussels: Global habitat engineers in coastal sediments. Helgol. Mar. Res. 63, 47–58 (2009).
Google Scholar
Source: Ecology - nature.com