in

Enhancing multiple scales of seafloor biodiversity with mussel restoration

  • Lees, A. C., Attwood, S., Barlow, J. & Phalan, B. Biodiversity scientists must fight the creeping rise of extinction denial. Nat. Ecol. Evol. 4, 1440–1443 (2020).

    PubMed 

    Google Scholar 

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Google Scholar 

  • Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. 2, 775–781 (2018).

    PubMed 

    Google Scholar 

  • Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 6219 (2015).

    Google Scholar 

  • Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122 (2006).

    Google Scholar 

  • Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beaumont, N. et al. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Mar. Pollut. Bull. 54, 253–265 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  • Turpie, J. K. The existence value of biodiversity in South Africa: How interest, experience, knowledge, income and perceived level of threat influence local willingness to pay. Ecol. Econ. 46, 199–216 (2003).

    Google Scholar 

  • Ruiz-Frau, A., Hinz, H., Edwards-Jones, G. & Kaiser, M. Spatially explicit economic assessment of cultural ecosystem services: Non-extractive recreational uses of the coastal environment related to marine biodiversity. Mar. Policy 38, 90–98 (2013).

    Google Scholar 

  • Thrush, S. F., Gray, J. S., Hewitt, J. E. & Ugland, K. I. Predicting the effects of habitat homogenization on marine biodiversity. Ecol. Appl. 16, 1636–1642 (2006).

    PubMed 

    Google Scholar 

  • Gillies, C. L. et al. Australian shellfish ecosystems: Past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Commito, J. A., Como, S., Grupe, B. M. & Dow, W. E. Species diversity in the soft-bottom intertidal zone: Biogenic structure, sediment, and macrofauna across mussel bed spatial scales. J. Exp. Mar. Biol. Ecol. 366, 70–81 (2008).

    Google Scholar 

  • Tokeshi, M. Species Coexistence: Ecological and Evolutionary Perspectives (Wiley, Hoboken, 2009).

    Google Scholar 

  • Paul, L. J. A history of the Firth of Thames dredge fishrey for mussels: Use and abuse of a coastal resource. Report No. 94, (Wellington, New Zealand, 2012).

  • Enderlein, P. & Wahl, M. Dominance of blue mussels versus consumer-mediated enhancement of benthic diversity. J. Sea Res. 51, 145–155 (2004).

    ADS 

    Google Scholar 

  • Lejart, M. & Hily, C. Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J. Sea Res. 65, 84–93 (2011).

    ADS 

    Google Scholar 

  • Norling, P. & Kautsky, N. Patches of the mussel Mytilus sp. are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquat. Biol. 4, 75–87 (2008).

    Google Scholar 

  • Norling, P., Lindegarth, M., Lindegarth, S. & Strand, Å. Effects of live and post-mortem shell structures of invasive Pacific oysters and native blue mussels on macrofauna and fish. Mar. Ecol. Prog. Ser. 518, 123–138 (2015).

    ADS 

    Google Scholar 

  • McLeod, I., Parsons, D., Morrison, M., Van Dijken, S. & Taylor, R. Mussel reefs on soft sediments: A severely reduced but important habitat for macroinvertebrates and fishes in New Zealand. N. Z. J. Mar. Freshw. Res. 48, 48–59 (2014).

    CAS 

    Google Scholar 

  • Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).

    Google Scholar 

  • zu Ermgassen, P. S., Grabowski, J. H., Gair, J. R. & Powers, S. P. Quantifying fish and mobile invertebrate production from a threatened nursery habitat. J. Appl. Ecol. 53, 596–606 (2016).

    Google Scholar 

  • Grabowski, J. H. The influence of trophic interactions, habitat complexity, and landscape setting on community dynamics and restoration of oyster reefs. Ph.D., The University of North Carolina at Chapel Hill (2002).

  • Harding, J. M., Allen, D. M., Haffey, E. R. & Hoffman, K. M. Site fidelity of oyster reef blennies and gobies in saltmarsh tidal creeks. Estuaries Coasts 43, 409–423 (2020).

    CAS 

    Google Scholar 

  • Parsons, D. et al. Snapper (Chrysophrys auratus): A review of life history and key vulnerabilities in New Zealand. N. Z. J. Mar. Freshw. Res. 48, 256–283 (2014).

    Google Scholar 

  • Callier, M. D., Richard, M., McKindsey, C. W., Archambault, P. & Desrosiers, G. Responses of benthic macrofauna and biogeochemical fluxes to various levels of mussel biodeposition: An in situ “benthocosm” experiment. Mar. Pollut. Bull. 58, 1544–1553. https://doi.org/10.1016/j.marpolbul.2009.05.010 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ysebaert, T., Hart, M. & Herman, P. M. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol. Mar. Res. 63, 59–74 (2009).

    ADS 

    Google Scholar 

  • Sea, M. A., Thrush, S. F. & Hillman, J. R. Environmental predictors of sediment denitrification rates within restored green-lipped mussel (Perna canaliculus) beds. Mar. Ecol. Prog. Ser. 667, 1–13 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Hillman, J. R., O’Meara, T. A., Lohrer, A. M., & Thrush, S. F. Influence of restored mussel reefs on denitrification in
    marine sediments. J. Sea Res. 175, 102099 (2021).

    Google Scholar 

  • Bacheler, N. M. et al. Comparison of trap and underwater video gears for indexing reef fish presence and abundance in the southeast United States. Fish. Res. 143, 81–88 (2013).

    Google Scholar 

  • Wells, R. D., Boswell, K. M., Cowan, J. H. Jr. & Patterson, W. F. III. Size selectivity of sampling gears targeting red snapper in the northern Gulf of Mexico. Fish. Res. 89, 294–299 (2008).

    Google Scholar 

  • Emslie, M. J., Cheal, A. J., MacNeil, M. A., Miller, I. R. & Sweatman, H. P. Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ 6, e4886 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Piggott, C. V., Depczynski, M., Gagliano, M. & Langlois, T. J. Remote video methods for studying juvenile fish populations in challenging environments. J. Exp. Mar. Biol. Ecol. 532, 151454 (2020).

    Google Scholar 

  • Dean, W. E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sediment. Res. 44, 242–248 (1974).

    CAS 

    Google Scholar 

  • Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12, 343–346 (1967).

    ADS 
    CAS 

    Google Scholar 

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Google Scholar 

  • Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial (2015).

  • Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to software and statistical methods (2008).

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).

  • Saier, B. Subtidal and intertidal mussel beds (Mytilus edulis L.) in the Wadden Sea: Diversity differences of associated epifauna. Helgol. Mar. Res. 56, 44–50 (2002).

    ADS 

    Google Scholar 

  • Peterson, C. H., Grabowski, J. H. & Powers, S. P. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Mar. Ecol. Prog. Ser. 264, 249–264 (2003).

    ADS 

    Google Scholar 

  • Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 101, 79–90 (2003).

    Google Scholar 

  • Norkko, A., Hewitt, J. E., Thrush, S. F. & Funnell, T. Benthic-pelagic coupling and suspension-feeding bivalves: Linking site-specific sediment flux and biodeposition to benthic community structure. Limnol. Oceanogr. 46, 2067–2072 (2001).

    ADS 

    Google Scholar 

  • Russell, B. The food and feeding habits of rocky reef fish of north-eastern New Zealand. N. Z. J. Mar. Freshw. Res. 17, 121–145 (1983).

    Google Scholar 

  • Gillies, C., Creighton, C. & McLeod, I. Shellfish reef habitats: A synopsis to underpin the repair and conservation of Australia’s environmentally, socially and economically important bays and estuaries. Report to the National Environmental Science Programme, Marine Biodiversity Hub, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Townsville, Qld, Australia (2015).

  • Lenihan, H. S. et al. Cascading of habitat degradation: Oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764–782 (2001).

    Google Scholar 

  • Connell, S. & Jones, G. The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. J. Exp. Mar. Biol. Ecol. 151, 271–294 (1991).

    Google Scholar 

  • Usmar, N. Ontogeny and Ecology of Snapper (Pagrus auratus) in an estuary, the Mahurangi Harbour (University of Auckland, 2009).

    Google Scholar 

  • Willis, T. J. & Anderson, M. J. Structure of cryptic reef fish assemblages: Relationships with habitat characteristics and predator density. Mar. Ecol. Prog. Ser. 257, 209–221 (2003).

    ADS 

    Google Scholar 

  • Thompson, S. Homing in a territorial reef fish. Copeia 1983, 832–834 (1983).

    Google Scholar 

  • Thrush, S. F., Schultz, D., Hewitt, J. E. & Talley, D. Habitat structure in soft-sediment environments and abundance of juvenile snapper Pagrus auratus. Mar. Ecol. Prog. Ser. 245, 273–280 (2002).

    ADS 

    Google Scholar 

  • Pickering, H. & Whitmarsh, D. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’debate, the influence of design and its significance for policy. Fish. Res. 31, 39–59 (1997).

    Google Scholar 

  • Karp, M. A., Seitz, R. D. & Fabrizio, M. C. Faunal communities on restored oyster reefs: Effects of habitat complexity and environmental conditions. Mar. Ecol. Prog. Ser. 590, 35–51 (2018).

    ADS 

    Google Scholar 

  • Hanke, M. H., Posey, M. H. & Alphin, T. D. The effects of intertidal oyster reef habitat characteristics on faunal utilization. Mar. Ecol. Prog. Ser. 581, 57–70 (2017).

    ADS 

    Google Scholar 

  • Cranfield, H., Rowden, A., Smith, D., Gordon, D. & Michael, K. Macrofaunal assemblages of benthic habitat of different complexity and the proposition of a model of biogenic reef habitat regeneration in Foveaux Strait, New Zealand. J. Sea Res. 52, 109–125 (2004).

    ADS 

    Google Scholar 

  • Norling, P. & Kautsky, N. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Mar. Ecol. Prog. Ser. 351, 163–175 (2007).

    ADS 

    Google Scholar 

  • Jaunatre, R. et al. New synthetic indicators to assess community resilience and restoration success. Ecol. Indicators 29, 468–477 (2013).

    Google Scholar 

  • O’Meara, T. A., Hewitt, J. E., Thrush, S. F., Douglas, E. J. & Lohrer, A. M. Denitrification and the role of macrofauna across estuarine gradients in nutrient and sediment loading. Estuaries Coasts 43, 1394–1405. https://doi.org/10.1007/s12237-020-00728-x (2020).

    CAS 
    Article 

    Google Scholar 

  • McCann, L. D. Oligochaete influence on settlement, growth and reproduction in a surface-deposit-feeding polychaete. J. Exp. Mar. Biol. Ecol. 131, 233–253 (1989).

    Google Scholar 

  • Hope, J. A., Paterson, D. M. & Thrush, S. F. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J. Ecol. 108, 815–830 (2020).

    Google Scholar 

  • Christianen, M. J. et al. Benthic primary producers are key to sustain the Wadden Sea food web: Stable carbon isotope analysis at landscape scale. Ecology 98, 1498–1512 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Commito, J. A. & Dankers, N. M. Dynamics of spatial and temporal complexity in European and North American soft-bottom mussel beds. In Ecological Comparisons of Sedimentary Shores, 39–59 (Springer, Berlin, 2001).

  • Arribas, L. P., Donnarumma, L., Palomo, M. G. & Scrosati, R. A. Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Mar. Biodivers. 44, 203–211 (2014).

    Google Scholar 

  • Walles, B., Salvador de Paiva, J., van Prooijen, B. C., Ysebaert, T. & Smaal, A. C. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures. Estuaries Coasts 38, 941–950 (2015).

    Google Scholar 

  • Tsuchiya, M. & Nishihira, M. Islands of Mytilus edulis as a habitat for small intertidal animals: Effect of Mytilus age structure on the species composition of the associated fauna and community organization. Mar. Ecol. Prog. Ser. 31, 171–178 (1986).

    ADS 

    Google Scholar 

  • Craeymeersch, J. A. & Jansen, H. M. Bivalve assemblages as hotspots for biodiversity. In Goods and Services of Marine Bivalves, 275–294 (Springer, Cham, 2019).

  • Buschbaum, C. et al. Mytilid mussels: Global habitat engineers in coastal sediments. Helgol. Mar. Res. 63, 47–58 (2009).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Bettina Stoetzer on envisioning a livable future

    Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.