in

Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates

  • Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaeggi, A. V. & Gurven, M. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Van Der Maas, H. L., Kan, K.-J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 16 (2017).

    PubMed Central 
    Article 

    Google Scholar 

  • Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Article 

    Google Scholar 

  • Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).

    Article 

    Google Scholar 

  • Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–894 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Biggs, R. O., Peterson, G. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23, 3 (2018).

    Article 

    Google Scholar 

  • Walker, B. & Meyers, J. A. Thresholds in ecological and social-ecological systems: a developing database. Ecol. Soc. 9, 2 (2004).

    Google Scholar 

  • Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnosky, A. D. et al. Approaching a state shift in earth’s biosphere. Nature 486, 52–58 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin, S., Deffuant, G. & Calabrese, J. M. in Viability and Resilience of Complex Systems (eds. Deffuant, G., & Gilbert, N.) 15–36 (Springer, 2011).

  • Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Campbell, C., Yang, S., Shea, K. & Albert, R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys. Rev. E 86, 021924 (2012).

    Article 
    CAS 

    Google Scholar 

  • Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).

    Article 

    Google Scholar 

  • Vizentin-Bugoni, J. et al. Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl Acad. Sci. USA 118, (2021).

  • Whanpetch, N. et al. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar. Coast. Shelf Sci. 87, 246–252 (2010).

    Article 

    Google Scholar 

  • Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).

    CAS 
    Article 

    Google Scholar 

  • Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dakos, V., van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).

    PubMed 
    Article 

    Google Scholar 

  • van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Wright, D. H. A simple, stable model of mutualism incorporating handling time. Am. Nat.134, 664–667 (1989).

    Article 

    Google Scholar 

  • Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

  • Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl Acad. Sci. USA 115, E639–E647 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).

    CAS 
    Article 

    Google Scholar 

  • May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    Article 

    Google Scholar 

  • Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003).

    CAS 
    Article 

    Google Scholar 

  • Martinez, N. D., Williams, R. J., Dunne, J. A. & Pascual, M. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. Pascual, M., Dunne, J. A., & Dunne, J. A.) 163–185 (Oxford University Press, 2006).

  • Chen, S., O’Dea, E. B., Drake, J. M. & Epureanu, B. I. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems. Sci. Rep. 9, 1–14 (2019).

    Article 
    CAS 

    Google Scholar 

  • Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).

    Article 

    Google Scholar 

  • Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).

    Article 
    CAS 

    Google Scholar 

  • Marsh, H. et al. Optimizing allocation of management resources for wildlife. Conserv. Biol. 21, 387–399 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reyer, C. P. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).

    Article 

    Google Scholar 

  • Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Hurwicz, L. The design of mechanisms for resource allocation. Am. Econ. Rev. 63, 1–30 (1973).

    Google Scholar 

  • Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).

    Article 

    Google Scholar 

  • Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).

    PubMed 
    Article 

    Google Scholar 

  • Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).

    Article 

    Google Scholar 

  • Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Web of Life, Ecological Networks Database (Bascompte Lab, accessed 12 June 2017); http://www.web-of-life.es/map.php?type=5/

  • Gleeson, J. P., Melnik, S., Ward, J. A., Porter, M. A. & Mucha, P. J. Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85, 026106 (2012).

    Article 
    CAS 

    Google Scholar 

  • Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).

  • Vázquez, D. P. Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes PhD thesis, University of Tennessee (2002).

  • Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants of the microstructure of plant-pollinator networks. Ecology 95, 3314–3324 (2014).

    Article 

    Google Scholar 

  • Memmott, J. The structure of a plant-pollinator food web. Ecol. Lett. 2, 276–280 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dicks, L., Corbet, S. & Pywell, R. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).

    Article 

    Google Scholar 

  • SMITH-RAMÍREZ, C., Martinez, P., Nunez, M., González, C. & Armesto, J. J. Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot. J. Linn. Soc. 147, 399–416 (2005).

    Article 

    Google Scholar 

  • Dupont, Y. L., Hansen, D. M. & Olesen, J. M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26, 301–310 (2003).

    Article 

    Google Scholar 

  • Dupont, Y. L. & Olesen, J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Age as a primary driver of the gut microbial composition and function in wild harbor seals

    Analysis of the impact of success on three dimensions of sustainability in 173 countries