in

EU-Trees4F, a dataset on the future distribution of European tree species

  • 1.

    FOREST EUROPE. State of Europe’s Forests (Ministerial Conference on the Protection of Forests in Europe, Bratislava, 2020).

  • 2.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1–8 (2013).

    Google Scholar 

  • 3.

    Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiv. Conserv. 26, 3005–3035 (2017).

    Google Scholar 

  • 4.

    Mori, A. S., Lertzman, K. P. & Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27 (2017).

    Google Scholar 

  • 5.

    Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).

    Google Scholar 

  • 6.

    Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).

    Google Scholar 

  • 7.

    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).

    Google Scholar 

  • 8.

    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    ADS 

    Google Scholar 

  • 9.

    Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    PubMed 

    Google Scholar 

  • 10.

    Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    PubMed 

    Google Scholar 

  • 11.

    Saltré, F. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).

    Google Scholar 

  • 12.

    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Google Scholar 

  • 13.

    Pedlar, J. H. et al. Placing forestry in the assisted migration debate. BioScience 62, 835–842 (2012).

    Google Scholar 

  • 14.

    Overpeck, J. T. & Breshears, D. D. The growing challenge of vegetation change. Science 372, 786–787 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Strona, G. et al. Far from naturalness: How much does spatial ecological structure of European tree assemblages depart from potential natural vegetation? Plos One 11, e0165178 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 1–7 (2019).

    CAS 

    Google Scholar 

  • 17.

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).

    ADS 

    Google Scholar 

  • 18.

    Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).

    Google Scholar 

  • 19.

    Nabuurs, G.-J. et al. Next-generation information to support a sustainable course for European forests. Nat. Sustain. 2, 815–818 (2019).

    Google Scholar 

  • 20.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738–5742 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change – is non-management an option? Ann. For. Sci. 76, 1–13 (2019).

    Google Scholar 

  • 23.

    Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 24, 1150–1163 (2018).

    ADS 

    Google Scholar 

  • 24.

    Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).

    ADS 

    Google Scholar 

  • 25.

    Thurm, E. A. et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430, 485–497 (2018).

    Google Scholar 

  • 26.

    Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Morin, X. et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8, 1–12 (2018).

    ADS 

    Google Scholar 

  • 29.

    Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).

    PubMed 

    Google Scholar 

  • 30.

    Messier, C. et al. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6, 1–16 (2019).

    Google Scholar 

  • 31.

    Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).

    ADS 

    Google Scholar 

  • 32.

    Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

    Google Scholar 

  • 33.

    Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1986 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).

    Google Scholar 

  • 35.

    Noce, S., Collalti, A. & Santini, M. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 7, 9358–9375 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Hickler, T. et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 21, 50–63 (2012).

    Google Scholar 

  • 37.

    Takolander, A., Hickler, T., Meller, L. & Cabeza, M. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Reg. Environ. Change 19, 251–266 (2019).

    Google Scholar 

  • 38.

    Chen, M. et al. Global land use for 2015–2100 at 0.05 resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 1–11 (2020).

    ADS 

    Google Scholar 

  • 39.

    Mauri, A., Strona, G. & San-Miguel-Ayanz, J. EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci. Data 4, 1–8 (2017).

    Google Scholar 

  • 40.

    Strona, G., Mauri, A. & San-Miguel-Ayanz, J. A high-resolution pan-European tree occurrence dataset. Figshare https://doi.org/10.6084/m9.figshare.c.3288407.v1 (2016).

  • 41.

    Benito-Garzón, M. & Fernández-Manjarrés, J. F. Testing scenarios for assisted migration of forest trees in Europe. New For. 46, 979–994 (2015).

    Google Scholar 

  • 42.

    Thuiller, W., Lavorel, S., Sykes, M. T. & Araújo, M. B. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers. Distrib. 12, 49–60 (2006).

    Google Scholar 

  • 43.

    Robinet, C. et al. A suite of models to support the quantitative assessment of spread in pest risk analysis. PLoS ONE 7, 10 (2012).

    Google Scholar 

  • 44.

    European Commission. The European Green Deal. (Publications office of the European Union, 2019).

  • 45.

    European Commission. EU Biodiversity Strategy for 2030, Bringing nature back into our lives. (Publications office of the European Union, 2020).

  • 46.

    European Commission. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. (Publications office of the European Union, 2018).

  • 47.

    European Commission. New EU Forest Strategy for 2030. (Publications office of the European Union, 2021).

  • 48.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Google Scholar 

  • 49.

    ICP Forests. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. http://icp-forests.net/ (2019).

  • 50.

    Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce–Distribution Atlas of Vascular Plants in Poland. (Nakladem Pracowni Chorologii Komputerowej Instytutu Botaniki Uniwersytetu – Laboratory of Computer Corology – Institute of Botany – Jagiellonian University, 2001).

  • 51.

    Gschwantner, T. et al. Common tree definitions for national forest inventories in Europe. Silva Fennica 43, 303–321 (2009).

    Google Scholar 

  • 52.

    Rivers, M. et al. European Red List of Trees. (International Union for Conservation of Nature and Natural Resources, 2019).

  • 53.

    Rocchini, D. et al. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Sci. Total Environ. 584, 282–290 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 54.

    Bartlein, P. J., Prentice, I. C. & Webb III, T. Climatic response surfaces from pollen data for some eastern North American taxa. J. Biogeogr. 35–57 (1986).

  • 55.

    Woodward, F. I. & Woodward, F. Climate and plant distribution. (Cambridge University Press, 1987).

  • 56.

    Harrison, S. et al. Towards a global scheme of plant functional types for ecosystem modelling, palaeoecology and climate impact research. J Veg Sci 21, 300–317 (2009).

    Google Scholar 

  • 57.

    Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).

    ADS 

    Google Scholar 

  • 58.

    Prentice, I. C. et al. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 117–134 (1992).

  • 59.

    Pouteau, R. et al. Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Divers. Distrib. 27, 2063–2076 (2021).

    Google Scholar 

  • 60.

    Naimi, B. USDM: Uncertainty analysis for species distribution models. https://www.rdocumentation.org/packages/usdm/versions/ (2015).

  • 61.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25, 1965–1978 (2005).

    Google Scholar 

  • 62.

    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Google Scholar 

  • 63.

    Teutschbein, C. & Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456, 12–29 (2012).

    ADS 

    Google Scholar 

  • 64.

    Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdiscip. Rev. Clim. Change 6, 301–319 (2015).

    Google Scholar 

  • 65.

    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).

    ADS 

    Google Scholar 

  • 66.

    Baker, B., Diaz, H., Hargrove, W. & Hoffman, F. Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Clim. Change 98, 113–131 (2010).

    ADS 

    Google Scholar 

  • 67.

    Barredo, J. I., Caudullo, G. & Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 75, 83–92 (2016).

    Google Scholar 

  • 68.

    Klausmeyer, K. R. & Shaw, M. R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PloS One 4, e6392 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565 (2010).

    PubMed 

    Google Scholar 

  • 70.

    Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1029–1136 (Cambridge University Press, 2013).

  • 71.

    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Zhang, L. et al. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PloS One 10, e0120056 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Google Scholar 

  • 74.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).

    Google Scholar 

  • 75.

    De Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. E. Shifts in global vegetation activity trends. Remote Sens. 5, 1117–1133 (2013).

    ADS 

    Google Scholar 

  • 76.

    Engler, R. & Guisan, A. MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 (2009).

    Google Scholar 

  • 77.

    Engler, R., Hordijk, W. & Guisan, A. The MIGCLIM R package–seamless integration of dispersal constraints into projections of species distribution models. Ecography 35, 872–878 (2012).

    Google Scholar 

  • 78.

    Merow, C., Wilson, A. M. & Jetz, W. Integrating occurrence data and expert maps for improved species range predictions. Glob. Ecol. Biogeogr. 26, 243–258 (2017).

    Google Scholar 

  • 79.

    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Euro+Med. Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ (2019).

  • 81.

    Summers, D. M., Bryan, B. A., Crossman, N. D. & Meyer, W. S. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob. Change Biol. 18, 2335–2348 (2012).

    ADS 

    Google Scholar 

  • 82.

    García-Valdés, R., Zavala, M. A., Araujo, M. B. & Purves, D. W. Chasing a moving target: Projecting climate change-induced shifts in non-equilibrial tree species distributions. J. Ecol. 101, 441–453 (2013).

    Google Scholar 

  • 83.

    Lischke, H., Zimmermann, N. E., Bolliger, J., Rickebusch, S. & Löffler, T. J. TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol. Model. 199, 409–420 (2006).

    Google Scholar 

  • 84.

    Tamme, R. et al. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95, 505–513 (2014).

    PubMed 

    Google Scholar 

  • 85.

    Thomson, F. J., Letten, A. D., Tamme, R., Edwards, W. & Moles, A. T. Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytol. 217, 407–415 (2018).

    PubMed 

    Google Scholar 

  • 86.

    Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS 

    Google Scholar 

  • 87.

    Mauri, A., Girardello, M. & Strona, G. EU-Trees4F. A dataset on the future distribution of European tree species, figshare, https://doi.org/10.6084/m9.figshare.c.5525688 (2021).

  • 88.

    Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).

    Google Scholar 

  • 89.

    Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).

    Google Scholar 

  • 90.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 91.

    Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 18, 2255–2261 (2009).

    Google Scholar 

  • 92.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • 93.

    R Core Team. R: A language and environment for statistical computing. (2020).


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium