in

Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects

[adace-ad id="91168"]
  • Chileshe, M. N. et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. https://doi.org/10.1007/s11676-019-00921-0 (2019).

    Article 

    Google Scholar 

  • Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2, 1–11 (2015).

    ADS 
    Article 

    Google Scholar 

  • Kayika, P., Siachoono, S., Kalinda, C. & Kwenye, J. An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Arch. Sci. 1, 2–5 (2017).

    Google Scholar 

  • Nazir, R. et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 7, 89–97 (2015).

    CAS 

    Google Scholar 

  • Surbakti, E. P., Iswantari, A., Effendi, H. & Sulistiono. Distribution of dissolved heavy metals Hg, Pb, Cd, and As in Bojonegara Coastal Waters, Banten Bay. IOP Conf. Ser. Earth Environ. Sci. 744, 012085 (2021).

    Article 

    Google Scholar 

  • Van Nguyen, T. et al. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. Int. J. Environ. Res. Public Health 13, 1091 (2016).

    Article 
    CAS 

    Google Scholar 

  • Yabe, J. et al. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environ. Toxicol. Chem. 30, 1892–1897 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Salem, M. A., Bedade, D. K., Al-ethawi, L. & Al-waleed, S. M. Heliyon Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 6, e05224 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tuakuila, J. et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int. Arch. Occup. Environ. Health 85, 927–939 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Setia, R. et al. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263, 128321 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burga, D. & Saunders, K. Understanding and Mitigating Lead Exposure in Kabwe: A One Health Approach (S. Afr. Inst. Policy Res, 2019).

    Google Scholar 

  • Ikenaka, Y., Nakayama, S. M. M., Muzandu, K. & Choongo, K. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. https://doi.org/10.4314/ajest.v4i11.71339 (2010).

    Article 

    Google Scholar 

  • Taylor, A. A. et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020).

    Article 

    Google Scholar 

  • Gummow, B., Botha, C. J., Basson, A. T. & Bastianello, S. S. Copper toxicity in ruminants: Air pollution as a possible cause. Onderstepoort J. Vet. Res. 58, 33–39 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 10, 256–264 (2003).

    CAS 
    Article 

    Google Scholar 

  • Olobatoke, R. & Mathuthu, M. Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Can. J. Soil Sci. 96, 299–304 (2008).

    Article 
    CAS 

    Google Scholar 

  • Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.08.004 (2020).

    Article 

    Google Scholar 

  • Trevor, M. et al. Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4, 26–37 (2019).

    Google Scholar 

  • Nalishuwa, L. Investigation on Copper Levels in and Around Fish Farms in Kitwe, Copperbelt Province, Zambia (Sokoine University of Agriculture, 2015).

    Google Scholar 

  • Ikenaka, Y. et al. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 4, 109–128 (2014).

    Google Scholar 

  • Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V. & Veselovský, F. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J. Afr. Earth Sci. 57, 14–30 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Manchisi, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. 112, 1051–1058 (2012).

    Google Scholar 

  • Fernández-Caliani, J. C., Barba-Brioso, C., González, I. & Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Prasad, R. & Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil 1–4 (Alabama Coop. Ext. Syst, 2019).

    Google Scholar 

  • Verma, F. et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 7, e08122 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F. & Taylor, M. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017).

    Article 

    Google Scholar 

  • Ndeddy Aka, R. J. & Babalola, O. O. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J. 21, 1–19 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: A demonstration of bioaugmentation potential. Water Air Soil Pollut. 230, 1–20 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhou, L. et al. Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015).

    CAS 
    Article 

    Google Scholar 

  • Kapungwe, E. M. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in Mufulira and Kafue towns in Zambia. J. Geogr. Geol. 5, 55–72 (2013).

    Google Scholar 

  • Sandell, E. Post-Mining Restoration in Zambia (Swedish University of Agricultural Sciences, 2020).

    Google Scholar 

  • Kumar, V., Pandita, S. & Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 103, 487–501 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S. & Rodríguez-Seijo, A. Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab), India. Appl. Sci. 11, 8362 (2021).

    CAS 
    Article 

    Google Scholar 

  • Setia, R. et al. Assessment of metal contamination in sediments of a perennial river in India using pollution indices and multivariate statistics. Arab. J. Geosci. 14, 1–9 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kumar, V. et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216, 449–462 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Environmental Council of Zambia. Environment Outlook Report in Zambia (2008).

  • Kasali, G. Clacc Capacity Strengthening in the Least Developed Countries. CLACC Working Paper (2008).

  • Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V. & Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164, 73–84 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cook, J. M. et al. The comparability of sample digestion techniques for the determination of metals in sediments. Mar. Pollut. Bull. 34, 637–644 (1997).

    CAS 
    Article 

    Google Scholar 

  • Güven, D. E. & Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi Univ. J. Sci. 24, 29–34 (2011).

    Google Scholar 

  • Jha, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 45, 713–725 (2014).

    CAS 
    Article 

    Google Scholar 

  • Walkley, A. & Black, I. A. A critical examination of rapid method for determining organic carbon in soil. Soil Sci. 63, 251–254 (1974).

    ADS 
    Article 

    Google Scholar 

  • Ure, A. M. Methods of analysis for heavy metals in soils. In Heavy Metals Soils (ed. Alloway, B. J.) 58–102 (Springer, 1995).

    Chapter 

    Google Scholar 

  • Staniland, S. et al. Cobalt uptake and resistance to trace metals in comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian Copperbelt. Geomicrobiol. J. 27, 656–668 (2010).

    CAS 
    Article 

    Google Scholar 

  • Ajmone-Marsan, F. & Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 213, 121–143 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Adriano, D. C. Trace elements in terrestrial environments. J. Environ. Qual. 32, 374 (2003).

    Google Scholar 

  • Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals (Springer, 2001).

    Book 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).

  • Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA, (2009).

  • Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975–1001 (1980).

    Article 

    Google Scholar 

  • Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108–118. (1969).

    Google Scholar 

  • Usero, J., A. Garcia and J. Fraidias, 2000. Andalicia Board, Environmental Counseling. 1st Edn., Seville, Editorial, pp: 164.

  • Sikamo, J., Mwanza, A. & Mweemba, C. Copper mining in Zambia—history and future. J. S. Afr. Inst. Min. Metall. 116, 6–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • DR Congo: copper production 2010–2020|Statista. https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/.

  • Lydall, M. I. & Auchterlonie, A. The Southern African Institute of Mining and Metallurgy 6th Southern Africa base metals conference 2011. The Democratic Republic of Congo and Zambia: A growing global ‘Hotspot’ for copper-cobalt mineral investment and explo. In The Southern African Institute of Mining and Metallurgy 25–38 (2011).

  • Worlanyo, A. S. & Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 279, 111623 (2021).

    CAS 
    Article 

    Google Scholar 

  • Shengo, M. L., Kime, M. B., Mambwe, M. P. & Nyembo, T. K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226–246 (2019).

    Article 

    Google Scholar 

  • Tembo, B. D., Sichilongo, K. & Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63, 497–501 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tveitnes, S. Soil productivity research programme in the high rainfall areas in Zambia. Agricultural University of Norway (1981).

  • Esshaimi, M., El Gharmali, A., Berkhis, F., Valiente, M. & Mandi, L. Speciation of heavy metals in the soil and the mining residues, in the Zinclead Sidi Bou Othmane Abandoned mine in Marrakech area. Linnaeus Eco-Tech https://doi.org/10.15626/eco-tech.2010.102 (2017).

    Article 

    Google Scholar 

  • Vítková, M. et al. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 74, 581–600 (2010).

    Article 
    CAS 

    Google Scholar 

  • Van Brusselen, D. et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, e158–e167 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. 8, 100793 (2021).

    Google Scholar 

  • Muleya, F. et al. Investigating the suitability and cost-benefit of copper tailings as partial replacement of sand in concrete in Zambia: An exploratory study. J. Eng. Des. Technol. 19, 828–849 (2020).

    Google Scholar 

  • Namweemba, M. G. Mining Induced Heavy Metal Soil and Crop Contamination in Chililabombwe on the Copperbelt of Zambia (University of Zambia, 2017).

    Google Scholar 

  • Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).

    CAS 
    Article 

    Google Scholar 

  • Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 249, 200–207 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • WHO/FAO. Food additives and contaminants. Joint FAO. WHO Food Stand. Program. ALINORM 1, 1–289 (2001).

    Google Scholar 

  • Sracek, O. et al. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174–188 (2012).

    CAS 
    Article 

    Google Scholar 

  • Hasimuna, O. J., Chibesa, M., Ellender, B. R. & Maulu, S. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Sci. Afr. 12, e00822 (2021).

    Google Scholar 

  • Kříbek, B. Mining and the environment in Africa. Conserv. Lett. 7, 302–311 (2011).

    Google Scholar 

  • Crommentuijn, T., M.D.Polder & Plassche, E. J. van de. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account. National Institute of Public Health and the Environment Bilthoven, The Netherlands (1997).

  • Maboeta, M. S., Oladipo, O. G. & Botha, S. M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull. Environ. Contam. Toxicol. 100, 702–707 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. & Odén, P. C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 30, 381–396 (2019).

    Article 

    Google Scholar 

  • Volk, J. & Yerokun, O. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 64 (2016).

    Article 
    CAS 

    Google Scholar 

  • Pietrini, F. et al. Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water (Switzerland) 11, 1837 (2019).

    CAS 

    Google Scholar 

  • EPA. Ecological Soil Screening Level for Iron Interim Final 211 (US Environ. Prot. Agency – Off. Solid Waste Emerg., 2005).

    Google Scholar 


  • Source: Ecology - nature.com

    Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.)

    Comprehensive climatic suitability evaluation of peanut in Huang-Huai-Hai region under the background of climate change