in

Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research

  • Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    Article 
    CAS 

    Google Scholar 

  • Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article 
    CAS 

    Google Scholar 

  • Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, 129–138 (1997).

    Article 

    Google Scholar 

  • Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Google Scholar 

  • Scheufen, T., Krämer, W. E., Iglesias-Prieto, R. & Enríquez, S. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep. 7, 4937 (2017).

    Article 

    Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article 
    CAS 

    Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article 

    Google Scholar 

  • Warner, M. E., Fitt, W. K. & Schmidt, G. W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ. 19, 291–299 (1996).

    Article 

    Google Scholar 

  • Iglesias-Prieto, R. Temperature-dependent inactivation of photosystem II in symbiotic dinoflagellates. in Proceedings of the 8th International Coral Reef Symposium (eds. Lessios, H. A. & MacIntyre, I. G.) Vol. 2, 1313–1318 (1997).

  • Takahashi, S., Nakamura, T., Sakamizu, M., van Woesik, R. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).

    Article 
    CAS 

    Google Scholar 

  • Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).

    Article 
    CAS 

    Google Scholar 

  • Scheufen, T., Iglesias-Prieto, R. & Enríquez, S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci. 4, 309 (2017).

  • Gómez-Campo, K., Enríquez, S. & Iglesias-Prieto, R. A road map for the development of the bleached coral phenotype. Front. Mar. Sci. 9, 806491 (2022).

  • Dahlhoff, E. A. & Somero, G. N. Effects of temperature on mitochondria from abalone (genus Haliotis): adaptive plasticity and its limits. J. Exp. Biol. 185, 151–168 (1993).

    Article 

    Google Scholar 

  • Kajiwara, K., Nagai, A. & Ueno, S. Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral Acropora pulchra. J. Sch. Mar. Sci. Technol. 40, 95–103 (1995).

    Google Scholar 

  • Rodolfo-Metalpa, R., Huot, Y. & Ferrier-Pagès, C. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J. Exp. Biol. 211, 1579–1586 (2008).

    Article 
    CAS 

    Google Scholar 

  • Marshall, A. T. & Clode, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23, 218–224 (2004).

    Article 

    Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W. & Gattuso, J.-P. The future of coral reefs in an age of global change. Int. J. Earth Sci. 90, 426–437 (2001).

    Article 
    CAS 

    Google Scholar 

  • Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article 
    CAS 

    Google Scholar 

  • Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article 
    CAS 

    Google Scholar 

  • Vasquez-Elizondo, R. M. & Enríquez, S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci. Rep. 6, 19030 (2016).

    Article 
    CAS 

    Google Scholar 

  • Anthony, K. R., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    Article 
    CAS 

    Google Scholar 

  • Gattuso, J.-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).

    Article 
    CAS 

    Google Scholar 

  • Langdon, C. & Aktinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, https://doi.org/10.1029/2004JC002576 (2005).

  • Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008).

    Article 
    CAS 

    Google Scholar 

  • Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).

    Article 

    Google Scholar 

  • Kleypas, J. A. et al. Impact of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Case Guide for Future Research Vol. 88 (2005).

  • Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E. & McCulloch, M. T. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Glob. Change Biol. 24, 4857–4868 (2018).

    Article 

    Google Scholar 

  • Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article 

    Google Scholar 

  • Hoadley, K. D., Pettay, D. T., Dodge, D. & Warner, M. E. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts. Coral Reefs 35, 529–542 (2016).

    Article 

    Google Scholar 

  • Langdon, C., Albright, R., Baker, A. & Jones, P. Two threatened Caribbean coral species have contrasting responses to combined temperature and acidification stress. Limnol. Oceanogr. 63, 2450–2464 (2018).

    Article 
    CAS 

    Google Scholar 

  • Agostini, S. et al. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis. C. R. Biol. 336, 384–391 (2013).

    Article 
    CAS 

    Google Scholar 

  • Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob. Change Biol. 9, 1660–1668 (2003).

    Article 

    Google Scholar 

  • Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. 28, 1753–1765 (2022).

    Article 
    CAS 

    Google Scholar 

  • Colombo-Pallotta, M. F., Rodríguez-Román, A. & Iglesias-Prieto, R. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29, 899–907 (2010).

    Article 

    Google Scholar 

  • Holcomb, M., Tambutte, E., Allemand, D. & Tambutte, S. Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2, e375 (2014).

    Article 

    Google Scholar 

  • Herfort, L., Thake, B. & Taubner, I. Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J. Phycol. 44, 91–98 (2008).

    Article 
    CAS 

    Google Scholar 

  • Tremblay, P., Fine, M., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis. Biogeosciences 10, 3997–4007 (2013).

    Article 

    Google Scholar 

  • Briggs, A. A. & Carpenter, R. C. Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga. Sci. Rep. 9, 3986 (2019).

  • Suggett, D. J. et al. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32, 327–337 (2013).

    Article 

    Google Scholar 

  • IPCC. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 747–845 (2007).

  • IPCC. Climate change 2021: The physical science basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  • Wall, C. B., Fan, T. Y. & Edmunds, P. J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33, 119–130 (2014).

    Article 

    Google Scholar 

  • Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & Mackenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114–117 (2008).

    Article 
    CAS 

    Google Scholar 

  • LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018). e6.

    Article 
    CAS 

    Google Scholar 

  • Kemp, D. W. et al. Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata. Coral Reefs 34, 535–547 (2015).

    Article 

    Google Scholar 

  • Enríquez, S., Méndez, E. R., Hoegh-Guldberg, O. & Iglesias-Prieto, R. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. Biol. Sci. 284, 20161667 (2017).

  • Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).

    Article 

    Google Scholar 

  • Skirving, W. et al. Remote sensing of coral bleaching using temperature and light: progress towards an operational algorithm. Remote Sens 10, 18 (2017).

    Article 

    Google Scholar 

  • Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol. Oceanogr. 51, 1887–1897 (2006).

    Article 

    Google Scholar 

  • Krämer, W., Caamaño-Ricken, I., Richter, C. & Bischof, K. Dynamic regulation of photoprotection determines thermal tolerance of two phylotypes of Symbiodinium clade A at two photon flux densities. Photochem. Photobio. 88, 398–413 (2012).

    Article 

    Google Scholar 

  • Wall, C. B., Mason, R. A. B., Ellis, W. R., Cunning, R. & Gates, R. D. Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci. 4, 170683 (2017).

    Article 
    CAS 

    Google Scholar 

  • Baghdasarian, G. et al. Effects of temperature and pCO2 on population regulation of Symbiodinium spp. in a tropical reef coral. Biol. Bull. 232, 123–139 (2017).

    Article 

    Google Scholar 

  • Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181168 (2018).

    Article 

    Google Scholar 

  • DeCarlo, T. M., Comeau, S., Cornwall, C. E. & McCulloch, M. T. Coral resistance to ocean acidification linked to increased calcium at the site of calcification. Proc. R. Soc. B Biol. Sci. 285, 20180564 (2018).

    Article 

    Google Scholar 

  • Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 112 (2016).

    Article 

    Google Scholar 

  • Hernansanz-Agustín, P. & Enríquez, J. A. Generation of reactive oxygen species by mitochondria. Antioxidants 10, 415 (2021).

    Article 

    Google Scholar 

  • Acín-Pérez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 (2014).

    Article 

    Google Scholar 

  • Burris, J. E., Porter, J. W. & Laing, W. A. Effects of carbon dioxide concentration on coral photosynthesis. Mar. Biol. 75, 113–116 (1983).

    Article 
    CAS 

    Google Scholar 

  • Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B Biol. Sci. 236, 311–324 (1989).

    Article 

    Google Scholar 

  • Goiran, C., Al-Moghrabi, S., Allemand, D. & Jaubert, J. Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J. Exp. Mar. Biol. Ecol. 199, 207–225 (1996).

    Article 
    CAS 

    Google Scholar 

  • Buxton, L., Badger, M. & Ralph, P. Effects of moderate heat stress and dissolved inorganic carbon concentration on photosynthesis and respiration of Symbiodinium sp. (Dinophyceae) in culture and in symbiosis. J. Phycol. 45, 357–365 (2009).

    Article 
    CAS 

    Google Scholar 

  • Lin, Z., Wang, L., Chen, M. & Chen, J. The acute transcriptomic response of coral-algae interactions to pH fluctuation. Mar. Genomics 42, 32–40 (2018).

    Article 

    Google Scholar 

  • Ziegler, M. et al. Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Glob. Change Biol. 27, 5532–5546 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl Acad. Sci. 118, e2015265118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cyronak, T. & Eyre, B. D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments. Mar. Chem. 183, 1–12 (2016).

    Article 
    CAS 

    Google Scholar 

  • Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bedwell-Ivers, H. E. et al. The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricata. ICES J. Mar. Sci. 74, 1103–1112 (2016).

    Article 

    Google Scholar 

  • Pierrot, D., Lewis, E. & Wallace, D. W. R. MS excel program developed for CO2 system calculations (2006).

  • Cayabyab, N. M. & Enríquez, S. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. N. Phytol. 176, 108–123 (2007).

    Article 

    Google Scholar 

  • Smith, S. V. & Kinsey, D. W. In Coral Reefs: Research Methods (eds. Stoddart, D. R. & Johannes, R. E.) 469–484 (UNESCO, 1978).

  • Yao, W. & Byrne, R. H. Simplified seawater alkalinity analysis—application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Deep Sea Res. Part Oceanogr. Res. Pap. 45, 1383–1392 (1998).

    Article 
    CAS 

    Google Scholar 

  • Vasquez-Elizondo, R. M. et al. Absorptance determinations on multicellular tissues. Photosynth. Res. 132, 311–324 (2017).

    Article 
    CAS 

    Google Scholar 

  • Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on the difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).

    Article 
    CAS 

    Google Scholar 

  • Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl Acad. Sci. USA 89, 10302–10305 (1992).

    Article 
    CAS 

    Google Scholar 

  • Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Richard Wurtman, influential figure in translational research, dies at 86

    Microbial rewilding in the gut microbiomes of captive ring-tailed lemurs (Lemur catta) in Madagascar