in

Expanding beaver pond distribution in Arctic Alaska, 1949 to 2019

  • Brown, R., Derksen, C, & Wang, L. A multi‐data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Atmos. 115(D16), 1–16 (2010).

  • Tan, A., Adam J. C., & Lettenmaier, D. P. Change in spring snowmelt timing in Eurasian Arctic rivers. J. Geophys. Rese. Atmos. 116(D3), 1–12 (2011).

  • St. Jacques, J. M., & Sauchyn, D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36(1), 1–6 (2009).

  • Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9(4), 312–318 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46(12), 6681–6689 (2019).

    ADS 
    Article 

    Google Scholar 

  • Nitze, I. et al. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9(1), 1–11 (2018).

    Article 

    Google Scholar 

  • Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10(1), 1–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • Jones, M. K. W., Pollard, W. H. & Jones, B. M. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environ. Res. Lett. 14(5), 055006 (2019).

    ADS 
    Article 

    Google Scholar 

  • Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520(7546), 171–179 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sturm, M., Racine, C. & Tape, K. D. Increasing shrub abundance in the Arctic. Nature 411(6837), 546–547 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11(1), 1–12 (2020).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Tape, K. D. et al. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11(4), e0152636 (2016).

    Article 

    Google Scholar 

  • Ward, D. H. et al. Multi-decadal trends in spring arrival of avian migrants to the central Arctic coast of Alaska: Effects of environmental and ecological factors. J. Avian Biol. 47(2), 197–207 (2016).

    Article 

    Google Scholar 

  • Tape, K. D. et al. Tundra be dammed: beaver colonization of the Arctic. Glob. Change Biol. 24(10), 4478–4488 (2018).

    ADS 
    Article 

    Google Scholar 

  • Whitfield, C. J. et al. Beaver-mediated methane emission: the effects of population growth in Eurasia and the Americas. Ambio 44(1), 7–15 (2015).

    CAS 
    Article 

    Google Scholar 

  • Westbrook, C. J., Cooper, D. J., & Baker, B. W. Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area. Water Resour. Res. 42(6), 1–12 (2006).

  • Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage 30(4), 492–507 (2002).

    Article 

    Google Scholar 

  • Naiman, R. J. & Rogers, K. H. Large animals and system-level characteristics in river corridors. Bioscience 47(8), 521–529 (1997).

    Article 

    Google Scholar 

  • Kemp, P. S. et al. Qualitative and quantitative effects of reintroduced beavers on stream fish. Fish Fish. 13(2), 158–181 (2012).

    Article 

    Google Scholar 

  • Furbearer Reports, various authors. Alaska Department of Fish & Game, Division of Wildlife Conservation. Juneau, Alaska (1965–2017)

  • Young, S.B., et al. The Environment of the Noatak River basin, Alaska. Center For Northern Studies. Wolcott, VT (1974)

  • Melchior, H. R. ed. Terrestrial Mammals of the Chukchi-Imuruk Area. In Biological Survey of the Bering Land Bridge National Monument: Revised Final Report. Biology and Resource Management Program, Alaska Cooperative Park Studies Unit, University of Alaska (1979)

  • Georgette, S. & Shiedt, A. Whitefish: traditional ecological knowledge and subsistence fishing in the Kotzebue Sound Region, Alaska. No. 290. Alaska Department of Fish and Game, Division of Subsistence (2005).

  • Brubaker, M. et al. Climate change and health effects in Northwest Alaska. Glob. Health Action 4(1), 8445 (2011).

    MathSciNet 
    Article 

    Google Scholar 

  • Rabung, S. & Norton sound bering straight regional planning team. Norton Sound Bering Straight Regional Comprehensive Salmon Plan: Phase II. Alaska Department of Fish & Game, 1–217 (2015)

  • Jones, B. M. et al. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 15(7), 075005 (2020).

    ADS 
    Article 

    Google Scholar 

  • Brewer, M. C. The thermal regime of an arctic lake. EOS Trans. Am. Geophys. Union 39(2), 278–284 (1958).

    Article 

    Google Scholar 

  • Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40(7), 1219–1236 (2010).

    Article 

    Google Scholar 

  • Lachenbruch, A. H. et al. Temperatures in permafrost. Temp. Meas. Control Sci. Ind. 1, 791 (1962).

    Google Scholar 

  • Smith, M. W. Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories. Can. J. Earth Sci. 12(8), 1421–1438 (1975).

    ADS 
    Article 

    Google Scholar 

  • Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes—toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121(12), 2446–2470 (2016).

    ADS 
    Article 

    Google Scholar 

  • Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res. Biogeosci. 118(3), 1334–1344 (2013).

    Article 

    Google Scholar 

  • Kantner, S. Swallowed by the Great Land: And Other Dispatches from Alaska’s Frontier. Mountaineers Books (2015)

  • Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ. 168, 301–315 (2015).

    ADS 
    Article 

    Google Scholar 

  • Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).

    ADS 
    Article 

    Google Scholar 

  • Willby, N. J. et al. Rewilding wetlands: beaver as agents of within-habitat heterogeneity and the responses of contrasting biota. Philos. Trans. R. Soc. B Biol. Sci. 373(1761), 20170444 (2018).

    Article 

    Google Scholar 

  • Kivinen, S., Nummi, P. & Kumpula, T. Beaver-induced spatiotemporal patch dynamics affect landscape-level environmental heterogeneity. Environ. Res. Lett. 15(9), 094065 (2020).

    ADS 
    Article 

    Google Scholar 

  • Pollock, M. M. et al. The importance of beaver ponds to coho salmon production in the Stillaguamish River basin, Washington, USA. North Am. J. Fish. Manag. 24(3), 749–760 (2004).

    Article 

    Google Scholar 

  • Weber, N. et al. Alteration of stream temperature by natural and artificial beaver dams. PLoS ONE 12(5), e0176313 (2017).

    Article 

    Google Scholar 

  • Nicieza, A. G. & Metcalfe, N. B. Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability. Ecology 78(8), 2385–2400 (1997).

    Article 

    Google Scholar 

  • Deegan, L. A. et al. Influence of environmental variability on the growth of age-0 and adult Arctic grayling. Trans. Am. Fish. Soc. 128(6), 1163–1175 (1999).

    Article 

    Google Scholar 

  • Jones, B. M. et al. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sens. 13(23), 4863 (2021).

    ADS 
    Article 

    Google Scholar 

  • Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jung, T. S. et al. Colonization of the Beaufort coastal plain by Beaver (Castor canadensis): a response to shrubification of the Tundra?. Can. Field-Naturalist 130(4), 332–335 (2016).

    Article 

    Google Scholar 

  • Halley, D. J., Saveljev, A. P. & Rosell, F. Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia. Mammal Rev. 51(1), 1–24 (2021).

    Article 

    Google Scholar 

  • Ecke, F. et al. Meta-analysis of environmental effects of beaver in relation to artificial dams. Environ. Res. Lett. 12(11), 113002 (2017).

    ADS 
    Article 

    Google Scholar 

  • Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing

    Absent legislative victory, the president can still meet US climate goals