Brown, R., Derksen, C, & Wang, L. A multi‐data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Atmos. 115(D16), 1–16 (2010).
Tan, A., Adam J. C., & Lettenmaier, D. P. Change in spring snowmelt timing in Eurasian Arctic rivers. J. Geophys. Rese. Atmos. 116(D3), 1–12 (2011).
St. Jacques, J. M., & Sauchyn, D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36(1), 1–6 (2009).
Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9(4), 312–318 (2016).
Google Scholar
Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46(12), 6681–6689 (2019).
Google Scholar
Nitze, I. et al. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9(1), 1–11 (2018).
Google Scholar
Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10(1), 1–11 (2019).
Google Scholar
Jones, M. K. W., Pollard, W. H. & Jones, B. M. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environ. Res. Lett. 14(5), 055006 (2019).
Google Scholar
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520(7546), 171–179 (2015).
Google Scholar
Sturm, M., Racine, C. & Tape, K. D. Increasing shrub abundance in the Arctic. Nature 411(6837), 546–547 (2001).
Google Scholar
Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11(1), 1–12 (2020).
Google Scholar
Tape, K. D. et al. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11(4), e0152636 (2016).
Google Scholar
Ward, D. H. et al. Multi-decadal trends in spring arrival of avian migrants to the central Arctic coast of Alaska: Effects of environmental and ecological factors. J. Avian Biol. 47(2), 197–207 (2016).
Google Scholar
Tape, K. D. et al. Tundra be dammed: beaver colonization of the Arctic. Glob. Change Biol. 24(10), 4478–4488 (2018).
Google Scholar
Whitfield, C. J. et al. Beaver-mediated methane emission: the effects of population growth in Eurasia and the Americas. Ambio 44(1), 7–15 (2015).
Google Scholar
Westbrook, C. J., Cooper, D. J., & Baker, B. W. Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area. Water Resour. Res. 42(6), 1–12 (2006).
Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage 30(4), 492–507 (2002).
Google Scholar
Naiman, R. J. & Rogers, K. H. Large animals and system-level characteristics in river corridors. Bioscience 47(8), 521–529 (1997).
Google Scholar
Kemp, P. S. et al. Qualitative and quantitative effects of reintroduced beavers on stream fish. Fish Fish. 13(2), 158–181 (2012).
Google Scholar
Furbearer Reports, various authors. Alaska Department of Fish & Game, Division of Wildlife Conservation. Juneau, Alaska (1965–2017)
Young, S.B., et al. The Environment of the Noatak River basin, Alaska. Center For Northern Studies. Wolcott, VT (1974)
Melchior, H. R. ed. Terrestrial Mammals of the Chukchi-Imuruk Area. In Biological Survey of the Bering Land Bridge National Monument: Revised Final Report. Biology and Resource Management Program, Alaska Cooperative Park Studies Unit, University of Alaska (1979)
Georgette, S. & Shiedt, A. Whitefish: traditional ecological knowledge and subsistence fishing in the Kotzebue Sound Region, Alaska. No. 290. Alaska Department of Fish and Game, Division of Subsistence (2005).
Brubaker, M. et al. Climate change and health effects in Northwest Alaska. Glob. Health Action 4(1), 8445 (2011).
Google Scholar
Rabung, S. & Norton sound bering straight regional planning team. Norton Sound Bering Straight Regional Comprehensive Salmon Plan: Phase II. Alaska Department of Fish & Game, 1–217 (2015)
Jones, B. M. et al. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 15(7), 075005 (2020).
Google Scholar
Brewer, M. C. The thermal regime of an arctic lake. EOS Trans. Am. Geophys. Union 39(2), 278–284 (1958).
Google Scholar
Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40(7), 1219–1236 (2010).
Google Scholar
Lachenbruch, A. H. et al. Temperatures in permafrost. Temp. Meas. Control Sci. Ind. 1, 791 (1962).
Smith, M. W. Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories. Can. J. Earth Sci. 12(8), 1421–1438 (1975).
Google Scholar
Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes—toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121(12), 2446–2470 (2016).
Google Scholar
Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res. Biogeosci. 118(3), 1334–1344 (2013).
Google Scholar
Kantner, S. Swallowed by the Great Land: And Other Dispatches from Alaska’s Frontier. Mountaineers Books (2015)
Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ. 168, 301–315 (2015).
Google Scholar
Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).
Google Scholar
Willby, N. J. et al. Rewilding wetlands: beaver as agents of within-habitat heterogeneity and the responses of contrasting biota. Philos. Trans. R. Soc. B Biol. Sci. 373(1761), 20170444 (2018).
Google Scholar
Kivinen, S., Nummi, P. & Kumpula, T. Beaver-induced spatiotemporal patch dynamics affect landscape-level environmental heterogeneity. Environ. Res. Lett. 15(9), 094065 (2020).
Google Scholar
Pollock, M. M. et al. The importance of beaver ponds to coho salmon production in the Stillaguamish River basin, Washington, USA. North Am. J. Fish. Manag. 24(3), 749–760 (2004).
Google Scholar
Weber, N. et al. Alteration of stream temperature by natural and artificial beaver dams. PLoS ONE 12(5), e0176313 (2017).
Google Scholar
Nicieza, A. G. & Metcalfe, N. B. Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability. Ecology 78(8), 2385–2400 (1997).
Google Scholar
Deegan, L. A. et al. Influence of environmental variability on the growth of age-0 and adult Arctic grayling. Trans. Am. Fish. Soc. 128(6), 1163–1175 (1999).
Google Scholar
Jones, B. M. et al. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sens. 13(23), 4863 (2021).
Google Scholar
Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).
Google Scholar
Jung, T. S. et al. Colonization of the Beaufort coastal plain by Beaver (Castor canadensis): a response to shrubification of the Tundra?. Can. Field-Naturalist 130(4), 332–335 (2016).
Google Scholar
Halley, D. J., Saveljev, A. P. & Rosell, F. Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia. Mammal Rev. 51(1), 1–24 (2021).
Google Scholar
Ecke, F. et al. Meta-analysis of environmental effects of beaver in relation to artificial dams. Environ. Res. Lett. 12(11), 113002 (2017).
Google Scholar
Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
Google Scholar
Source: Ecology - nature.com