Species used in the experiments
Milnesium inceptum32 (Fig. 1A, a picture taken using Olympus BX41 Phase Contrast light Microscope associated with Olympus SC50 digital camera) is an obligatory predatory species with the body length ranging from 326 to 848 μm. It feeds on rotifers, nematodes and other tardigrades and lays smooth eggs in exuviae. To stay active, M. inceptum needs a thin water film around its body14. The species inhabits places exposed to shorter and longer periods of drying i.e. frequently drying mosses growing on cement walls32. Till now it was reported in Poland, Germany, Japan, Switzerland and Bulgaria32. At the same time, it is a perfect organism for our research because (1) it is large and easy to observe, (2) it tolerates frequent periods of entering and leaving anhydrobiosis, (3) it easily creates a tun stage. Milnesium inceptum for experimental purposes were acquired from a moss sample from a cement wall in Poznań, Poland (52°24′15″N, 16°53′18″E). The extraction of tardigrades was conducted under stereomicroscope (Olympus SZ51) using standard methods33. Then specimens, further used in our experiments, have been cultured based on protocol proposed by Roszkowska et al.34. Only fully active, adult specimens were selected for the experiments.
Cepaea nemoralis35 (Fig. 1B, a picture taken using Motorola g(9), Camera version 7.3.63.53-whitney) is a stylommatophoran European land snail species, which is widespread and common throughout the continent36. The average maximum shell diameter is 20 to 22 mm37. It feeds on plant materials available, yet has a strong preference for dead and senescent herbs38. C. nemoralis occurs in variable habitats (frequently in synanthropic ones) such as forests, meadows, gardens, near shrubs or dunes36.The period of its activity falls on the growing season; it usually comes out of the shell and crawls when the air humidity reaches 70% or more, independently from solar radiation and air temperature28. The species is a good model for our study due to its: (1) large size compared to tardigrades, and (2) co-occurrence with M. inceptum in natural environments. Individuals of C. nemoralis were harvested from anthropogenic environment: gardens adjacent to detached houses (52°25′28″N, 16°46′52″E). Snails were collected from plants, cement walls and ground surfaces. After collection, all C. nemoralis specimens were washed-up and placed in 30 L (480 × 360 × 252 mm) transparent plastic box with mesh covering for ventilation. Soil and rocks were placed in the box allowing to maintain a moist shelter for snails, and a sepia was used as a source of a calcium. Animals were fed with lettuce, cabbage and nettle twice a week and sprinkled with water to stimulate their activity. Box containing snails was kept in a rearing room, at 17 °C in 12:12 photoperiod. Snails were kept in the box for 1.5 months prior to the experiments. For the experiments we used only adult animals. The snails were checked under Olympus SZX7 stereomicroscope prior to the experiment to ensure they were free of tardigrades.
Pilot studies
Does the tardigrades’ distribution within a moss cushion enable tardigrade-snail contact?
To check whether tardigrades may come into a close encounter with the snail in the natural environment (which would be impossible if the tardigrades were only present in the lower layers of the moss), we investigated the distribution of water bears within moss cushions. The observations were performed for 6 samples of dried moss cushions (ca. 1 cm high and 3 cm in diameter). The moss containing M. inceptum specimens, was collected from a concrete wall in Poznań, Poland (52°24′15″N, 16°53′18″E), the same from which tardigrades were initially collected for the culturing purposes. Three moss cushions were rehydrated, and left for 3 h followed by further observation to check whether tardigrades may actively move across the moss cushion. On the remaining three moss samples, a horizontal cut was made through the center of the moss cushion to check in which layer tardigrade tuns are present while the moss remains dry. The extraction of tardigrades from separated layers was conducted under stereomicroscope (Olympus SZ51) using standard methods33.
Within the dry moss cushions tardigrades were present in both the upper and lower moss layers. We did not observe any difference in the number of individuals of M. inceptum that would be dependent on the moss layer. A total of 353 tardigrades were extracted from one moss cushion (dry weight of moss = 0.332 g), what gives the density of tardigrades per 1 g of dry moss sample equal to 1063 specimens. The observation of rehydrated moss cushions conducted in vivo using Olympus SZX16 stereomicroscope associated with Olympus DP74 digital camera and cellSens software revealed that single active tardigrades may also appear on the moss surface (Fig. 1C, red arrow). Therefore, observed in the pilot studies tardigrades distribution within the moss cushion enables tardigrade-snail contact.
Is it possible for a tardigrade to take a snail ride?
The initial observations were carried out for snails and tardigrades to check whenever a tardigrade may be transferred by a snail. In total, 10 snails and 20 active tardigrades were used. Two variants of Petri dishes (ø 90 mm) were prepared: (1) with smooth and (2) scratched bottom, to avoid and allow tardigrade attachment to the bottom of the dish, respectively. We repeated the observation five times per option. For each single observation we used one snail and two tardigrades.
Snails and tardigrades were split equally between the pilot’s experimental options (in total 5 snails and 10 tardigrades per option). We checked whether tardigrades may be transferred by snails by putting tardigrades in the drop of water in the center of a Petri dish and releasing an active snail to crawl through the drop. In total, in the case of the smooth-bottom option, three tardigrades glued to the snail’s body within which two were moved to a distance up to a few centimeters. The third one fixed to a snail’s leg and had a potential to be transferred to a greater distance. In the case of the dishes with the scratched bottom, we did not notice any transfer. Tardigrades were attached tightly to the dishes’ bottom and remained unmoved after the snail had passed through them. Therefore, the observation in the pilot study confirmed that tardigrades may stick to snails’ body and be transferred by a gastropod at least when the substratum (bottom of the dish) is smooth.
Experimental design
Experiment 1. Do snails have a significant effect on tardigrade dispersion that depends on the substrate type?
As the laboratory environment offers limited possibilities to reflect natural conditions, we aimed to create an environment similar to the natural one by eliminating as many artificial elements as possible and, at the same time, enabling observation and data collection. To imitate a natural microhabitat of water bears we used a piece of moss as a substrate. Moss is a natural shelter and a hunting space for these animals, and a gripping surface that prevents them from being easily carried away by a stream of water or wind. The moss Vesicularia dubyana39 used in the experiment was purchased in an aquarium shop and was derived from an in vitro culture. It was checked under Olympus SZX7 stereomicroscope prior to the experiment to ensure it was free of tardigrades. For experimental purposes we used plastic ventilated boxes with dimensions 950 mm × 950 mm × 600 mm, tightly closed with a plastic lid. The bottom of each box was scratched with sandpaper in order to (1) imitate a rough surface of a concrete wall to which mosses are attached in the natural environment; (2) allow tardigrade locomotion. At the same time, moss and (unfortunately) plastic elements are quite common surroundings of C. nemoralis frequently found in anthropogenic habitats36.
Using transparent, non-toxic aquarium silicone, a square with a side length of 3 cm and a height of 0.5 cm was mounted on the bottom of the box. Before starting the experiment, the tightness of the square silicone barrier was checked by pouring 2.5 ml of water inside and leaving the boxes for observation for 24 h. After this time, all silicone squares turned out to be impermeable to water.
Boxes for each of the experimental option, namely: (A) control (further in the text referred as C), (B) tardigrades + snail (referred as TS), and (C) tardigrades + snail + moss (referred as TSM, see Fig. 2), were prepared in a following way: 2.5 ml of water was added to the scratched bottom of the box inside the silicone square and 7.5 ml to the area outside of the silicone square to enable survival and active locomotion of tardigrades on both sides of the silicone barrier. Then, 10 active individuals of M. inceptum taken from the culture were transferred to the center of the silicone square. It was repeated for 90 boxes (30 boxes per each C, TS and TSM option). Therefore we used 300 tardigrades per each experimental option which gives 900 tardigrades in total for all experimental options. In case of 30 boxes with TSM option, a piece of moss (ca. 2.5 cm in diameter) was added. It was situated in the center of the silicone square, just after the tardigrades were placed at the boxes in order to isolate tardigrades from the snail during the experiment.
Finally, in the boxes targeted for TS and TSM experimental options, one adult and active individual of C. nemoralis snail was placed in each box outside the silicone square. In total, 60 snails were used (30 individuals per experimental option).
The boxes were then placed in the rearing room (17 °C, 80% of humidity, photoperiod 12:12) for 72 h. After this time, the number of tardigrades inside and outside the silicone square was counted (both: live and dead) separately for each box, using Olympus SZX7 stereomicroscope.
Experiment 2. Effect of the snail’s mucus on tardigrade recovery to active life after anhydrobiosis
Milnesium inceptum anhydrobiosis protocol
Only fully active, adult specimens of medium body length were selected for the experiment. The animals were transferred to ø 3.5 cm vented Petri-dishes with bottom scratched by sandpaper to allow tardigrade locomotion. Five tardigrade individuals were placed to each Petri dish together with 450 µl of water and then dehydrated. In total, 16 Petri dishes with 5 tardigrades on each were prepared. Dehydration process lasted 72 h and was performed in the Q-Cell incubator (40–50% RH, 20 °C, darkness). After that time tardigrade tuns were kept under the abovementioned conditions for 7 days.
Impact of the snail’s mucus on tardigrade tuns
After 7 days of anhydrobiosis, one individual of C. nemoralis was transferred to each dish with tardigrade tuns and was left there for 1 min allowing the snail to actively crawl over the tuns. 30 min after the snail was removed from the dish, tardigrade tuns were observed under the Olympus SZX7 stereomicroscope for any animal movements. Then, all covered and vented dishes were left in the Q-Cell incubator overnight. After 24 h, the dried tuns were rehydrated by adding 3 ml of water to each Petri dish to check whether snail’s mucus affected mortality rates of tardigrades. After 3 and 24 h following rehydration tardigrade tuns were observed for any animal movements. Pictures of tuns were taken using Olympus SZ61 stereomicroscope associated with Olympus UC30 camera (Fig. 3). As reference data on the rehydration of the M. inceptum tuns free of the snail’s mucus, we used the data from Roszkowska et al.20 who tested anhydrobiosis survivability of above-mentioned species. Individuals used for the tuns preparation in the control option were collected from the same laboratory breeding stock, and prepared at the same laboratory conditions as those used in our experiments20.
Statistical analyses
The number of tardigrades relocated in each experimental option (C, TS and TSM) was compared with a one-way ANOVA randomized version using RundomPro 3.14 software40. We used non-parametric methods because of the lack of normality. Differences were considered significant at p < 0.05.
Source: Ecology - nature.com