in

Exploring agricultural land-use and childhood malaria associations in sub-Saharan Africa

  • Tusting, L. S. et al. Mapping changes in housing in sub-Saharan Africa from 2000 to 2015. Nature 568, 391–394 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lozano, R. et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 2091–2138 (2018).

    Google Scholar 

  • Kassebaum, N. J. et al. Global, regional, and national levels and causes of maternal mortality during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 980–1004 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhiman, S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect. Dis. Poverty 8, 1–19 (2019).

    Google Scholar 

  • WHO. World Malaria Report 2018 (WHO, 2018).

    Google Scholar 

  • Janko, M. M. et al. The links between agriculture, Anopheles mosquitoes, and malaria risk in children younger than 5 years in the Democratic Republic of the Congo: A population-based, cross-sectional, spatial study. Lancet Planet. Health 2, e74–e82 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayne, T. S., Chamberlin, J. & Headey, D. D. Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis. Food Policy 48, 1–17 (2014).

    Google Scholar 

  • Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).

    ADS 

    Google Scholar 

  • Chaves, L. S. M. et al. Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nat. Commun. 11, 1–10 (2020).

    Google Scholar 

  • Adenle, A. A., Azadi, H. & Manning, L. The era of sustainable agricultural development in Africa: Understanding the benefits and constraints. Food Rev. Int. 34, 411–433 (2018).

    Google Scholar 

  • Ijumba, J. N. & Lindsay, S. W. Impact of irrigation on malaria in Africa: Paddies paradox. Med. Vet. Entomol. 15, 1–11 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Warra, A. A. & Prasad, M. N. V. African perspective of chemical usage in agriculture and horticulture—their impact on human health and environment. In Agrochemicals, Detection Treatment and Remediation 401–436 (Elsevier, 2020).

    Google Scholar 

  • Fornace, K. M., Diaz, A. V., Lines, J. & Drakeley, C. J. Achieving global malaria eradication in changing landscapes. Malar. J. 20, 1–14 (2021).

    Google Scholar 

  • Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).

    PubMed 

    Google Scholar 

  • Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J. & Wilson, M. L. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop. Med. Int. Heal. 5, 263–274 (2000).

    CAS 

    Google Scholar 

  • Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).

    PubMed 

    Google Scholar 

  • Guerra, C. A., Snow, R. W. & Hay, S. I. A global assessment of closed forests, deforestation and malaria risk. Ann. Trop. Med. Parasitol. 100, 189–204 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Laporta, G. Z., de Prado, P. I. K. L., Kraenkel, R. A., Coutinho, R. M. & Sallum, M. A. M. Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Negl. Trop. Dis. 7, e2139 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 0108 (2017).

    Google Scholar 

  • Patz, J. A., Graczyk, T. K., Geller, N. & Vittor, A. Y. Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(00)00141-7 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Sogoba, N. et al. Spatial analysis of malaria transmission parameters in the rice cultivation area of Office du Niger, Mali. Am. J. Trop. Med. Hyg. 76, 1009–1015 (2007).

    PubMed 

    Google Scholar 

  • Mwangangi, J. M. et al. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya. Malar. J. 9, 1–10 (2010).

    Google Scholar 

  • Diuk-Wasser, M. A. et al. Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar. Int. J. Remote Sens. 27, 535–548 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Briët, O. J. T., Dossou-Yovo, J., Akodo, E., Van De Giesen, N. & Teuscher, T. M. The relationship between Anopheles gambiae density and rice cultivation in the savannah zone and forest zone of Côte d’Ivoire. Trop. Med. Int. Heal. 8, 439–448 (2003).

    Google Scholar 

  • Klinkenberg, E., McCall, P. J., Wilson, M. D., Amerasinghe, F. P. & Donnelly, M. J. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar. J. 7, 1–9 (2008).

    Google Scholar 

  • Keiser, J. et al. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am. J. Trop. Med. Hyg. 72, 392–406 (2005).

    PubMed 

    Google Scholar 

  • Kyei-Baafour, E. et al. Impact of an irrigation dam on the transmission and diversity of Plasmodium falciparum in a seasonal malaria transmission area of Northern Ghana. J. Trop. Med. 2020, 1–8 (2020).

    Google Scholar 

  • Kibret, S. Time to revisit how dams are affecting malaria transmission. Lancet Planet. Heal. 2, e378–e379 (2018).

    Google Scholar 

  • Kibret, S., Lautze, J., McCartney, M., Nhamo, L. & Yan, G. Malaria around large dams in Africa: Effect of environmental and transmission endemicity factors. Malar. J. 18, 1–12 (2019).

    Google Scholar 

  • Kibret, S., Wilson, G. G., Ryder, D., Tekie, H. & Petros, B. Malaria impact of large dams at different eco-epidemiological settings in Ethiopia. Trop. Med. Health 45, 1–14 (2017).

    Google Scholar 

  • Keiser, J., Singer, B. H. & Utzinger, J. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: A systematic review. Lancet Infect. Dis. 5, 695–708 (2005).

    PubMed 

    Google Scholar 

  • Ijumba, J. N., Shenton, F. C., Clarke, S. E., Mosha, F. W. & Lindsay, S. W. Irrigated crop production is associated with less malaria than traditional agricultural practices in Tanzania. Trans. R. Soc. Trop. Med. Hyg. 96, 476–480 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Ijumba, J. N., Mosha, F. W. & Lindsay, S. W. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med. Vet. Entomol. 16, 28–38 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Klinkenberg, E. et al. Malaria and irrigated crops, Accra, Ghana. Emerg. Infect. Dis. 11, 1290–1293 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • USAID. The DHS Program—DHS Methodology. https://www.dhsprogram.com/What-We-Do/Survey-Types/DHS-Methodology.cfm (1984).

  • Siraj, A. S. et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154–1158 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pascual, M., Ahumada, J. A., Chaves, L. F., Rodó, X. & Bouma, M. Malaria resurgence in the East African highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. U. S. A. 103, 5829–5834 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindblade, K. A. et al. Sustainability of reductions in malaria transmission and infant mortality in Western Kenya with use of insecticide-treated bednets 4 to 6 years of follow-up. J. Am. Med. Assoc. 291, 2571–2580 (2004).

    CAS 

    Google Scholar 

  • Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).

    PubMed 

    Google Scholar 

  • Weiss, D. J. et al. Re-examining environmental correlates of Plasmodium falciparum Malaria endemicity: A data-intensive variable selection approach. Malar. J. 14, 1–18 (2015).

    Google Scholar 

  • Bauhoff, S. & Busch, J. Does deforestation increase malaria prevalence? Evidence from satellite data and health surveys. World Dev. 127, 104734 (2020).

    Google Scholar 

  • Austin, K. F., Bellinger, M. O. & Rana, P. Anthropogenic forest loss and malaria prevalence: A comparative examination of the causes and disease consequences of deforestation in developing nations. AIMS Environ. Sci. 4, 217–231 (2017).

    Google Scholar 

  • Kabaria, C. W., Gilbert, M., Noor, A. M., Snow, R. W. & Linard, C. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malar. J. 16, 1–10 (2017).

    Google Scholar 

  • Herrera, D. et al. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8, 1–8 (2017).

    CAS 

    Google Scholar 

  • Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself?. Proc. Natl. Acad. Sci. U. S. A. 113, 14964–14969 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ickowitz, A. Shifting cultivation and deforestation in tropical Africa: Critical reflections. Dev. Change 37, 599–626 (2006).

    Google Scholar 

  • Kar, N. P., Kumar, A., Singh, O. P., Carlton, J. M. & Nanda, N. A review of malaria transmission dynamics in forest ecosystems. Parasit. Vectors 7, 1–12 (2014).

    Google Scholar 

  • Phalan, B. et al. Crop expansion and conservation priorities in tropical countries. PLoS ONE 8, e51759 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Afrane, Y. A. et al. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana?. Acta Trop. 89, 125–134 (2004).

    PubMed 

    Google Scholar 

  • De Silva, P. M. & Marshall, J. M. Factors contributing to urban malaria transmission in sub-saharan Africa: A systematic review. J. Trop. Med. 2012, 1–10 (2012).

    Google Scholar 

  • Kibret, S., Wilson, G. G., Tekie, H. & Petros, B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar. J. 13, 1–12 (2014).

    Google Scholar 

  • Dongus, S. et al. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania. Geospat. Health 3, 189–210 (2009).

    PubMed 

    Google Scholar 

  • Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georganos, S. et al. Modelling the wealth index of demographic and health surveys within cities using very high-resolution remotely sensed information. Remote Sens. 11, 2543 (2019).

    ADS 

    Google Scholar 

  • Pascual, M. & Baeza, A. What happens when forests fall?. Elife 10, e67863 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. U. S. A. 116, 22212–22218 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valle, D. & Clark, J. Conservation efforts may increase malaria burden in the Brazilian Amazon. PLoS ONE 8, e57519 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. U. S. A. 115, 7979–7984 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, E. & Huppert, A. The effects of host diversity on vector-borne disease: The conditions under which diversity will amplify or dilute the disease risk. PLoS ONE https://doi.org/10.1371/journal.pone.0080279 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamana, T. K. & Eltahir, E. A. B. Incorporating the Effects of Humidity in a Mechanistic Model of Anopheles Gambiae Mosquito Population Dynamics in the Sahel Region of Africa. http://www.parasitesandvectors.com/content/6/1/235. https://doi.org/10.1186/1756-3305-6-235 (2013).

  • Wielgosz, B., Kato, E. & Ringler, C. Agro-ecology, household economics and malaria in Uganda: Empirical correlations between agricultural and health outcomes. Malar. J. 13, 1–11 (2014).

    Google Scholar 

  • Asale, A., Duchateau, L., Devleesschauwer, B., Huisman, G. & Yewhalaw, D. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): A systematic review. Infect. Dis. Poverty 6, 1–14 (2017).

    Google Scholar 

  • Halliday, F., Rohr, J. & Laine, A.-L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. https://doi.org/10.1101/2020.04.20.050377 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pienkowski, T., Dickens, B. L., Sun, H. & Carrasco, L. R. Empirical evidence of the public health benefits of tropical forest conservation in Cambodia: A generalised linear mixed-effects model analysis. Lancet Planet. Health 1, e180–e187 (2017).

    PubMed 

    Google Scholar 

  • Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).

    PubMed 

    Google Scholar 

  • Krefis, A. C. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Drakeley, C. J. et al. Altitude-Dependent and -Independent Variations in Plasmodium falciparum Prevalence in Northeastern Tanzania. J. Infect. Dis. 191, 1589–1598 (2005).

    PubMed 

    Google Scholar 

  • Masuda, K. Length of maternal schooling and children’s risk of malaria infection: Evidence from a natural experiment in Uganda. BMJ Glob. Health 5, 4–11 (2020).

    Google Scholar 

  • Ma, C. et al. Is maternal education a social vaccine for childhood malaria infection? A cross-sectional study from war-torn Democratic Republic of Congo. Pathog. Glob. Health 111, 98–106 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Njau, J. D., Stephenson, R., Menon, M. P., Kachur, S. P. & McFarland, D. A. Investigating the important correlates of maternal education and childhood malaria infections. Am. J. Trop. Med. Hyg. 91, 509–519 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Degarege, A., Fennie, K., Degarege, D., Chennupati, S. & Madhivanan, P. Improving socioeconomic status may reduce the burden of malaria in sub Saharan Africa: A systematic review and meta-analysis. PLoS ONE 14, 1–26 (2019).

    Google Scholar 

  • Sonko, S. T. et al. Does socio-economic status explain the differentials in malaria parasite prevalence? Evidence from the Gambia. Malar. J. 13, 1–12 (2014).

    Google Scholar 

  • Tusting, L. S. et al. Housing improvements and malaria risk in Sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 14, 1–15 (2017).

    Google Scholar 

  • Yang, D. et al. Drinking water and sanitation conditions are associated with the risk of malaria among children under five years old in sub-Saharan Africa: A logistic regression model analysis of national survey data. J. Adv. Res. 21, 1–13 (2020).

    PubMed 

    Google Scholar 

  • Hay, S. I., Guerra, C. A., Tatem, A. J., Atkinson, P. M. & Snow, R. W. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 3, 81–90 (2011).

    Google Scholar 

  • Murray, C. J. L. et al. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet 379, 413–431 (2012).

    PubMed 

    Google Scholar 

  • Nankabirwa, J. et al. Malaria in school-age children in Africa: An increasingly important challenge. Trop. Med. Int. Heal. 19, 1294–1309 (2014).

    Google Scholar 

  • Okiro, E. A. et al. Age patterns of severe paediatric malaria and their relationship to Plasmodium falciparum transmission intensity. Malar. J. 8, 1–11 (2009).

    Google Scholar 

  • Fullman, N., Burstein, R., Lim, S. S., Medlin, C. & Gakidou, E. Nets, spray or both? the effectiveness of insecticide-treated nets and indoor residual spraying in reducing malaria morbidity and child mortality in sub-Saharan Africa. Malar. J. 12, 1 (2013).

    Google Scholar 

  • Agusto, F. B. et al. The impact of bed-net use on malaria prevalence. J. Theor. Biol. 320, 58–65 (2013).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Hughes, R. A., Heron, J., Sterne, J. A. C. & Tilling, K. Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. Int. J. Epidemiol. 48, 1294–1304 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Beck-Johnson, L. M. et al. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8, e79276 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hien, D. F. D. S. et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 12, 1–17 (2016).

    Google Scholar 

  • Donnelly, B., Berrang-Ford, L., Ross, N. A. & Michel, P. A systematic, realist review of zooprophylaxis for malaria control. Malar. J. 14, 1–16 (2015).

    Google Scholar 

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Townes, L. R., Mwandama, D., Mathanga, D. P. & Wilson, M. L. Elevated dry-season malaria prevalence associated with fine-scale spatial patterns of environmental risk: A case-control study of children in rural Malawi. Malar. J. 12, 1 (2013).

    Google Scholar 

  • Brock, P. M. et al. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. B 286, 20182351 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z., Manjourides, J., Cohen, T., Hu, Y. & Jiang, Q. Spatial measurement errors in the field of spatial epidemiology. Int. J. Health Geogr. 15, 1–12 (2016).

    Google Scholar 

  • Rockström, J. et al. Managing water in rainfed agriculture: The need for a paradigm shift. Agric. Water Manag. 97, 543–550 (2010).

    Google Scholar 

  • Rockström, J., Barron, J. & Fox, P. Water productivity in rain-fed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. Water Product. Agric. limits Oppor. Improv. 85199, 145–162. https://doi.org/10.1079/9780851996691.0145 (2009).

    Article 

    Google Scholar 

  • Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet. Infect. Dis. 6, 411–425 (2006).

    PubMed 

    Google Scholar 

  • Halstead, N. T. et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat. Commun. 9, 837 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sokolow, S. H. et al. Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc. Natl. Acad. Sci. U. S. A. 112, 9650–9655 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasolofoson, R. A., Hanauer, M. M., Pappinen, A., Fisher, B. & Ricketts, T. H. Impacts of forests on children’s diet in rural areas across 27 developing countries. Sci. Adv. 4, 1–10 (2018).

    Google Scholar 

  • Doxsey-Whitfield, E. et al. Taking advantage of the improved availability of census data: A first look at the gridded population of the world, version 4. Pap. Appl. Geogr. 1, 226–234 (2015).

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 850, 850–854 (2013).

    ADS 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • Hollister, M. J. Package ‘elevatr’ Title Access Elevation Data from Various APIs. (2018).

  • Bontemps, S. et al. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover CCI. Proc. ESA Living Planet Symp. 13, 9–13 (2013).

    Google Scholar 

  • Mahende, C. et al. Performance of rapid diagnostic test, blood-film microscopy and PCR for the diagnosis of malaria infection among febrile children from Korogwe District, Tanzania. Malar. J. 15, 1–7 (2016).

    Google Scholar 

  • Stauffer, W. M. et al. Diagnostic performance of rapid diagnostic tests versus blood smears for malaria in US clinical practice. Clin. Infect. Dis. 49, 908–913 (2009).

    PubMed 

    Google Scholar 

  • Yankson, R., Anto, E. A. & Chipeta, M. G. Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana. Malar. J. 18, 1–12 (2019).

    Google Scholar 

  • Gatton, M. L. et al. Impact of Plasmodium falciparum gene deletions on malaria rapid diagnostic test performance. Malar. J. 19, 1–11 (2020).

    Google Scholar 

  • Austin, K. F. Export agriculture is feeding malaria: A cross-national examination of the environmental and social causes of malaria prevalence. Popul. Environ. 35, 133–158 (2013).

    Google Scholar 

  • Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).

    ADS 

    Google Scholar 

  • Ayele, D. G., Zewotir, T. T. & Mwambi, H. G. Prevalence and risk factors of malaria in Ethiopia. Malar. J. 11, 1 (2012).

    Google Scholar 

  • Acheson, E. S. & Kerr, J. T. Nets versus spraying: A spatial modelling approach reveals indoor residual spraying targets Anopheles mosquito habitats better than mosquito nets in Tanzania. PLoS ONE 13, 1–19 (2018).

    Google Scholar 

  • Siraj, A. S. et al. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria. Proc. R. Soc. B 282, 20151383 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishengoma, D. S. et al. Trends of Plasmodium falciparum prevalence in two communities of Muheza district North-eastern Tanzania: Correlation between parasite prevalence, malaria interventions and rainfall in the context of re-emergence of malaria after two decades of progressive. Malar. J. 17, 1–10 (2018).

    Google Scholar 

  • Weiss, D. J. et al. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: A high-resolution spatiotemporal prediction. Malar. J. 13, 1–11 (2014).

    Google Scholar 

  • Watts, A. G. et al. Elevation as a proxy for mosquito-borne zika virus transmission in the Americas. PLoS ONE 12, 1–16 (2017).

    Google Scholar 

  • Shah, H. A., Dritsaki, M., Pink, J. & Petrou, S. Psychometric properties of Patient Reported Outcome Measures (PROMs) in patients diagnosed with Acute Respiratory Distress Syndrome (ARDS). Health Qual. Life Outcomes 14, 15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eneanya, O. A. et al. Environmental suitability for lymphatic filariasis in Nigeria. Parasites Vectors 11, 1–13 (2018).

    Google Scholar 

  • Craney, T. A. & Surles, J. G. Model-dependent variance inflation factor cutoff values. Qual. Eng. 14, 391–403 (2002).

    Google Scholar 

  • Anderson, D. & Burnham, K. Model Selection and Multimodel Inference (Springer, 2002).

    MATH 

    Google Scholar 

  • Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).

    Google Scholar 

  • Guo, G. & Zhao, H. Multilevel modeling for binary data. Annu. Rev. Sociol. 26, 441–462 (2000).

    Google Scholar 

  • Li, B., Lingsma, H. F., Steyerberg, E. W. & Lesaffre, E. Logistic random effects regression models: A comparison of statistical packages for binary and ordinal outcomes. BMC Med. Res. Methodol. 11, 1–11 (2011).

    Google Scholar 

  • Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Google Scholar 

  • Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Google Scholar 

  • Shmueli, G. To explain or to predict?. Stat. Sci. 25, 289–310 (2010).

    MathSciNet 
    MATH 

    Google Scholar 

  • Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, 1–17 (2018).

    Google Scholar 

  • Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Norton, E. C., Dowd, B. E. & Maciejewski, M. L. Marginal effects: Quantifying the effect of changes in risk factors in logistic regression models. JAMA 320, 84–85 (2018).

    PubMed 

    Google Scholar 

  • RStudio Team. R Studio: Integrated Development for R (2015).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    Toward batteries that pack twice as much energy per pound