Díaz, S., Cabido, M. & Casanoves, F. Functional implications of trait-environment linkages in plant communities. Ecolog. Assem. Rules Perspect. Adv. Retreat. 26, 338–362 (1999).
Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18(2), 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x (2009).
Google Scholar
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33(1), 125–159 (2002).
Brown, A. M. et al. The fourth-corner solution–using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5(4), 344–352. https://doi.org/10.1111/2041-210X.12163 (2014).
Google Scholar
Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. F. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24(6), 988–1000 (2013).
Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35(8), 716–725 (2012).
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T. & Svenning, J.-C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31(2), 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x (2013).
Google Scholar
Burnett, B. N., Meyer, G. A. & McFadden, L. D. Aspect-related microclimatic influences on slope forms and processes, Northeastern Arizona. J. Geophys. Res. Earth Surf. 113(3), 129. https://doi.org/10.1029/2007JF000789 (2008).
Google Scholar
Hais, M., Chytrý, M. & Horsák, M. Exposure-related forest-steppe: a diverse landscape type determined by topography and climate. J. Arid Environ. 135, 75–84. https://doi.org/10.1016/j.jaridenv.2016.08.011 (2016).
Google Scholar
Holden, Z. A. & Jolly, W. M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. Forest Ecol. Manag. 262(12), 2133–2141. https://doi.org/10.1016/j.foreco.2011.08.002 (2011).
Google Scholar
Dyer, J. M. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecol. 24(3), 391–403. https://doi.org/10.1007/s10980-008-9316-6 (2009).
Google Scholar
Lan, G., Hu, Y., Cao, M. & Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. Forest Ecol. Manag. 262(8), 1507–1513. https://doi.org/10.1016/j.foreco.2011.06.052 (2011).
Google Scholar
Punchi-Manage, R. et al. Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J. Ecol. 101(1), 149–160. https://doi.org/10.1111/1365-2745.12017 (2013).
Google Scholar
Rubino, D. L. & McCarthy, B. C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. Forest Ecol. Manag. 183(1), 221–238. https://doi.org/10.1016/S0378-1127(03)00108-7 (2003).
Google Scholar
Sefidi, K., Esfandiary Darabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. IForest-Biogeosciences and Forestry 9(4), 658 (2016).
Liu, J., Yunhong, T. & Slik, J. F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecol. Manag. 330, 75–81 (2014).
Díaz, S. et al. The global spectrum of plant form and function. Nature 529(7585), 167 (2016).
Google Scholar
Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199(2), 213–227 (1998).
Google Scholar
King, D. A. The adaptive significance of tree height. Am. Nat. 135(6), 809–828 (1990).
Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851–854 (2004).
Google Scholar
Mäkelä, A. Implications of the pipe model theory on dry matter partitioning and height growth in trees. J. Theor. Biol. 123(1), 103–120 (1986).
Google Scholar
King, D. Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51(3), 351–356 (1981).
Google Scholar
Hoch, G., Popp, M. & Körner, C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98(3), 361–374. https://doi.org/10.1034/j.1600-0706.2002.980301.x (2002).
Google Scholar
Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4), 445–459 (1998).
Google Scholar
Hoch, G. & Körner, C. Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J. Ecol. 97(1), 57–66. https://doi.org/10.1111/j.1365-2745.2008.01447.x (2009).
Google Scholar
Hoch, G. & Körner, C. Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob. Ecol. Biogeogr. 21(8), 861–871. https://doi.org/10.1111/j.1466-8238.2011.00731.x (2012).
Google Scholar
Shi, P., Körner, C. & Hoch, G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct. Ecol. 22(2), 213–220. https://doi.org/10.1111/j.1365-2435.2007.01370.x (2008).
Google Scholar
Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants https://doi.org/10.1093/aobpla/plx054 (2017).
Google Scholar
Hendrickson, L., Ball, M. C., Wood, J. T., Chow, W. S. & Furbank, R. T. Low temperature effects on photosynthesis and growth of grapevine. Plant Cell Environ. 27(7), 795–809. https://doi.org/10.1111/j.1365-3040.2004.01184.x (2004).
Google Scholar
Körner, C. & Hoch, G. A test of treeline theory on a montane permafrost island. Arct. Antarct. Alp. Res. 38(1), 113–119 (2006).
Muller-Landau, H. C. The tolerance–fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl. Acad. Sci. 107(9), 4242–4247 (2010).
Google Scholar
Lloret, F., Casanovas, C. & Peñuelas, J. Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 13(2), 210–216. https://doi.org/10.1046/j.1365-2435.1999.00309.x (1999).
Google Scholar
Quero, J. L., Villar, R., Marañón, T., Zamora, R. & Poorter, L. Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am. J. Bot. 94(11), 1795–1803. https://doi.org/10.3732/ajb.94.11.1795 (2007).
Google Scholar
Hallett, L. M., Standish, R. J. & Hobbs, R. J. Seed mass and summer drought survival in a Mediterranean-climate ecosystem. Plant Ecol. 212(9), 1479. https://doi.org/10.1007/s11258-011-9922-2 (2011).
Google Scholar
McFadden, I. R. et al. Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology 100(3), e02591. https://doi.org/10.1002/ecy.2591 (2019).
Google Scholar
Moles, A. T. & Westoby, M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92(3), 372–383. https://doi.org/10.1111/j.0022-0477.2004.00884.x (2004).
Google Scholar
Shipley, B. et al. Predicting habitat affinities of plant species using commonly measured functional traits. J. Veg. Sci. 28(5), 1082–1095. https://doi.org/10.1111/jvs.12554 (2017).
Google Scholar
Willson, C. J. & Jackson, R. B. Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol. Plant. 127(3), 374–382 (2006).
Google Scholar
Peguero-Pina, J. J. et al. Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill. and Abies pinsapo Boiss. Tree Physiol. 31(10), 1067–1075 (2011).
Google Scholar
Tyree, M. & Sperry, J. Vulnerability of xylem to cavitation and embolism. Ann. Rev. Plant Biol 40, 19–36 (1989).
Wubbels, J. (2010). Tree Species Distribution in Relation to Stem Hydraulic Traits and Soil Moisture in a Mixed Hardwood Forest in Central Pennsylvania.
Perez-Harguindeguy, N. et al. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64(8), 715–716 (2016).
Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221(3), 1457–1465 (2019).
Google Scholar
Ahrens, C. W., Rymer, P. D. & Tissue, D. T. Intra-specific trait variation remains hidden in the environment. New Phytol. 2, 1183–1185 (2021).
Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18(12), 1406–1419 (2015).
Google Scholar
Benito Garzón, M., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20(5), 766–778 (2011).
Henn, J. J. et al. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9, 1548 (2018).
Google Scholar
Zhang, B. et al. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Funct. Ecol. 34(12), 2622–2633 (2020).
Xu, H., Wang, H., Prentice, I. C., Harrison, S. P. & Wright, I. J. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytol. 2, 90387 (2021).
Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221(1), 155–168 (2019).
Google Scholar
Li, X., Lu, H., Yu, L. & Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sens. 10(1), 148 (2018).
Google Scholar
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Sci. Rep. 3, 1069 (2007).
Gittleman, J. L. & Kot, M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39(3), 227–241 (1990).
Reich, P. B., Wright, I. J. & Lusk, C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17(7), 1982–1988 (2007).
Google Scholar
Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. The evolutionary ecology of seed size. Seeds Ecol. Regener. Plant Commun. 2, 31–57 (2000).
Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26(1), 119–188 (2020).
Google Scholar
Wang, H. et al. The China plant trait database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2), 1039 (2018).
Knapp, B. O., Wang, G. G., Clark, S. L., Pile, L. S. & Schlarbaum, S. E. Leaf physiology and morphology of Castanea dentata (Marsh.) Borkh., Castanea mollissima Blume, and three backcross breeding generations planted in the southern Appalachians, USA. New Forests 45(2), 283–293 (2014).
Chen, L. et al. Seed dispersal and seedling recruitment of trees at different successional stages in a temperate forest in northeastern China. J. Plant Ecol. 7(4), 337–346 (2014).
Marchi, S., Tognetti, R., Minnocci, A., Borghi, M. & Sebastiani, L. Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen Sclerophyllous Mediterranean shrub (Olea europaea). Trees 22(4), 559 (2008).
Google Scholar
Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27(15), 2865–2873 (2008).
Google Scholar
Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10(3), 415–425. https://doi.org/10.1111/2041-210X.13119 (2019).
Google Scholar
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78(4), 685–709 (2013).
Google Scholar
Boyd, K., Costa, V. S., Davis, J., & Page, C. D. (2012). Unachievable region in precision-recall space and its effect on empirical evaluation. in Proceedings of the International Conference on Machine Learning. International Conference on Machine Learning, 2012, 349. NIH Public Access.
Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10(4), 565–577 (2019).
Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31(15), 2595–2597 (2015).
Google Scholar
Keilwagen, J., Grosse, I. & Grau, J. Area under precision-recall curves for weighted and unweighted data. PloS One 9(3), e92209 (2014).
Google Scholar
Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10(3), e0118432 (2015).
Google Scholar
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Schmitt, S. et al. Topography consistently drives intra-and inter-specific leaf trait variation within tree species complexes in a Neotropical forest. Oikos 129(10), 1521–1530 (2020).
Source: Ecology - nature.com