in

Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation

[adace-ad id="91168"]
  • 1.

    Mendes R, Raaijmakers JM. Cross-kingdom similarities in microbiome functions. ISME J. 2015;9:1905–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet. 2017;18:690–9.

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, et al. Gut and root microbiota commonalities. Appl Environ Microbiol. 2013;79:2–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome. 2018;6:231.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.

    CAS 

    Google Scholar 

  • 9.

    Li H, La S, Zhang X, Gao L, Tian Y. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J. 2021;15:2865–82.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Xu L, Dong Z, Chiniquy D, Pierroz G, Deng S, Gao C, et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat Commun. 2021;12:3209.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32.

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 2021;15:330–47.

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184:615–.e17.

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16:605–16.

    PubMed 

    Google Scholar 

  • 15.

    Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil. 2014;378:1–33.

    CAS 

    Google Scholar 

  • 17.

    Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174:1388–.e21.

    CAS 

    Google Scholar 

  • 18.

    Kaakoush NO. Fecal transplants as a microbiome-based therapeutic. Curr Opin Microbiol. 2020;56:16–23.

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108:500–8.

    PubMed 

    Google Scholar 

  • 20.

    Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371:602–9.

    CAS 

    Google Scholar 

  • 21.

    Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002;40:309–48.

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Gopal M, Gupta A, Thomas GV. Bespoke microbiome therapy to manage plant diseases. Front Microbiol. 2013;4:355.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Raaijmakers JM, Bonsall RF, Weller DM. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology. 1999;89:470–5.

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 2009;3:977–91.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Siddiqui ZA, Shakeel U. Screening of Bacillus isolates for potential biocontrol of the wilt disease complex of pigeon pea (Cajanus cajan) under greenhouse and small-scale field conditions. J Plant Pathol. 2007;89:179–83.

    Google Scholar 

  • 26.

    Yadav K, Damodaran T, Dutt K, Singh A, Muthukumar M, Rajan S, et al. Effective biocontrol of banana fusarium wilt tropical race 4 by a bacillus rhizobacteria strain with antagonistic secondary metabolites. Rhizosphere. 2021;18:100341.

    Google Scholar 

  • 27.

    Meng Q, Yin J, Rosenzweig N, Douches D, Hao JJ. Culture-based assessment of microbial communities in soil suppressive to potato common scab. Plant Dis. 2012;96:712–7.

    PubMed 

    Google Scholar 

  • 28.

    Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VCL, et al. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J. 2018;12:2307–21.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol. 2017;8:2529.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Raaijmakers JM, Mazzola M. Soil immune responses. Science. 2016;352:1392–3.

    CAS 

    Google Scholar 

  • 31.

    Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL. The soil-borne legacy. Cell. 2018;172:1178–80.

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology. 2017;107:1284–97.

    PubMed 

    Google Scholar 

  • 33.

    Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marecková M, Grundmann GL, et al. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J. 2009;3:1127–38.

    PubMed 

    Google Scholar 

  • 34.

    Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis. 2012;96:718–25.

    PubMed 

    Google Scholar 

  • 35.

    Cha JY, Han S, Hong H-J, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29.

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, et al. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep. 2016;6:36773.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–100.

    CAS 

    Google Scholar 

  • 38.

    Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, Veresoglou SD, et al. Interchange of entire communities: microbial community coalescence. Trends Ecol Evol. 2015;30:470–6.

    PubMed 

    Google Scholar 

  • 40.

    Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 2021;15:3181–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12:3038–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Hu J, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ Microbiol. 2020;22:5005–18.

    PubMed 

    Google Scholar 

  • 43.

    Schreiter S, Ding G-C, Heuer H, Neumann G, Sandmann M, Grosch R, et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol. 2014;5:144.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wei Z, Hu J, Gu Y, Yin S, Xu Y, Jousset A, et al. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem. 2018;118:8–17.

    CAS 

    Google Scholar 

  • 45.

    Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, et al. Bacterial wilt in China: History, current status, and future perspectives. Front Plant Sci. 2017;8:1549.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Manda RR, Addanki VA, Srivastava S. Bacterial wilt of solanaceous crops. Int J Chem Stud. 2020;8:1048–57.

    CAS 

    Google Scholar 

  • 47.

    Barik S, Reddy AC, Ponnam N, Kumari M, C AG, Reddy DCL, et al. Breeding for bacterial wilt resistance in eggplant (Solanum melongena L.): progress and prospects. Crop Prot. 2020;137:105270.

    CAS 

    Google Scholar 

  • 48.

    Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol. 2011;48:152–9.

    Google Scholar 

  • 49.

    Park E-J, Lee S-D, Chung E-J, Lee M-H, Um H-Y, Murugaiyan S, et al. MicroTom – A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathol J. 2007;23:239–44.

    Google Scholar 

  • 50.

    Schandry N. A practical guide to visualization and statistical analysis of R. solanacearum infection data using R. Front Plant Sci. 2017;8:623.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–642.

    CAS 

    Google Scholar 

  • 54.

    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 

    Google Scholar 

  • 58.

    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.

    Google Scholar 

  • 59.

    Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, et al. FEAST: fast expectation-maximization for microbial source tracking. Nat Methods. 2019;16:627–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Mendiburu F de. agricolae: Statistical procedures for agricultural research. R package version 1.3–5. 2021.

  • 61.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13:113.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Ma B, Wang Y, Ye S, Liu S, Stirling E, Gilbert JA, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome. 2020;8:82.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Kuntal BK, Chandrakar P, Sadhu S, Mande SS. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 2019;13:442–54.

    PubMed 

    Google Scholar 

  • 68.

    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Choi K, Choi J, Lee PA, Roy N, Khan R, Lee HJ, et al. Alteration of bacterial wilt resistance in tomato plant by microbiota transplant. Front Plant Sci. 2020;11:1186.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J-M, Morrison RM, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371:595–602.

    CAS 

    Google Scholar 

  • 71.

    D’Haens GR, Jobin C. Fecal microbial transplantation for diseases beyond recurrent Clostridium difficile infection. Gastroenterology. 2019;157:624–36.

    PubMed 

    Google Scholar 

  • 72.

    Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011;53:994–1002.

    PubMed 

    Google Scholar 

  • 73.

    Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol. 2021;18:503–13.

    PubMed 

    Google Scholar 

  • 75.

    Jiang G, Wang N, Zhang Y, Zhang Y, Yu J, Zhang Y, et al. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol Lett. 2021;3:356–66.

  • 76.

    Wei Z, Friman VP, Pommier T, Geisen S, Jousset A, Shen Q. Rhizosphere immunity: targeting the underground for sustainable plant health management. Front Agric Sci Eng. 2020;7:317–28.

    Google Scholar 

  • 77.

    Hu J, Wei Z, Friman VP, Gu SH, Wang X-F, Eisenhauer N, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio. 2016;7:e01790–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Bakker PAHM, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ. Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J. 2013;29:136–43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun. 2015;6:8413.

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Li M, Wei Z, Wang J, Jousset A, Friman V-P, Xu Y, et al. Facilitation promotes invasions in plant-associated microbial communities. Ecol Lett. 2019;22:149–58.

    PubMed 

    Google Scholar 

  • 81.

    Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 2018;12:212–24.

    PubMed 

    Google Scholar 

  • 82.

    Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia. 2020;143:104558.

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Sarbu LG, Bahrin LG, Babii C, Stefan M, Birsa ML. Synthetic flavonoids with antimicrobial activity: a review. J Appl Microbiol. 2019;127:1282–90.

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Madadi E, Mazloum-Ravasan S, Yu JS, Ha JW, Hamishehkar H, Kim KH. Therapeutic application of betalains: a review. Plants. 2020;9:E1219.

    PubMed 

    Google Scholar 

  • 85.

    Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol. 2009;7:514–25.

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Kolton M, Erlacher A, Berg G, Cytryn E. The Flavobacterium genus in the plant holobiont: ecological, physiological, and applicative insights. In: Castro-Sowinski S, editor. Microbial models: from environmental to industrial sustainability. Singapore: Springer; 2016. p. 189–207.

  • 87.

    Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol. 2018;285:44–55.

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing global online learners for the clean energy transition

    Energizing communities in Africa