Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change. 9, 306–312 (2019).
Google Scholar
Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biol. 15, 1090–1103 (2009).
Google Scholar
Hoeksema, B. W. & Matthews, J. L. Contrasting bleaching patterns in mushroom coral assemblages at Koh Tao Gulf of Thailand. Coral Reefs 30, 95 (2011).
Google Scholar
Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726 (2020).
Google Scholar
Hutchinson G. E. Concluding remarks. – Cold Spring Harb. Symp. Quant. Biol. 22: 415–427 (1957).
Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Ann. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).
Google Scholar
King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41(9), 1469–1484 (2018).
Google Scholar
Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: Lessons from Ofu American Samoa. Front. Mar. Sci. 4, 434 (2018).
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B. 37420180174 (2019).
Howells, E. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).
Google Scholar
Haguenauer, A., Zuberer, F., Ledoux, J.-B. & Aurelle, D. Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. J. Exp. Mar. Biol. Ecol. 449, 349–357 (2013).
Google Scholar
Linares, C., Cebrian, E., Kipson, S. & Garrabou, J. Does thermal history influence the tolerance of temperate gorgonians to future warming?. Mar. Environ. Res. 89, 45–52 (2013).
Google Scholar
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
Google Scholar
Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).
Google Scholar
Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reefbuilding corals. Glob. Chang. Biol. 23, 4675–4688 (2017).
Google Scholar
Krueger, T. et al. Common reef-building coral in the northern Red Sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 4, 170038 (2017).
Google Scholar
Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).
Google Scholar
Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: Tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).
Google Scholar
Hawkins, T. D. & Warner, M. E. Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone. J. Exp. Biol. 220, 969–983 (2017).
Williams, D. E., Miller, M. W., Bright, A. J., Pausch, R. E. & Valdivia, A. Thermal stress exposure, bleaching response, and mortality in the threatened coral Acropora palmata. Bull. Mar. Poll. 124, 189–197 (2017).
Google Scholar
Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).
Google Scholar
Ferrier-Pagès, C. et al. Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J. Exp. Biol. 212, 3007–3015 (2009).
Google Scholar
Rodolfo-Metalpa, R. et al. Thermally tolerant corals have limited capacity to acclimatize to future warming. Global Change Biol. 20, 3036–3049 (2014).
Google Scholar
Ledoux, J-B., Aurelle, D., Bensoussan, N, Marschal, C., Feral & Garrabou, J. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5, 1178–1192 (2015).
Crisci, C. et al. Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Sci. Rep. 7, 5069 (2017).
Google Scholar
Jurriaans, S. & Hoogenboom M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Phil. Trans. R. Soc. B. 37420180546 (2019).
Cerrano, C. et al. Catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), Summer 1999. Ecol. Lett. 3, 284–293 (2000).
Google Scholar
Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global. Chang. Biol. (in press).
Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer–autumn feeding constraints. Mar Biol. 149, 643–651 (2006).
Google Scholar
Coma, R. et al. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. U.S.A. 106, 6176–6181 (2009).
Google Scholar
Kipson, S. Ecology of gorgonian dominated communities in the Eastern Adriatic Sea. PhD thesis. University of Zagreb, Zagreb, 160 pp. (2013).
Bally, M. & Garrabou, J. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Global Change Biol. 13, 2078–2088 (2007).
Google Scholar
Vezzulli, L., Previati, M., Pruzzo, C., Marchese, A., Bourne. D. G. & Cerrano C. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12, 2007–2019 (2010).
Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).
Google Scholar
Tignat-Perrier, R. et al. The effect of thermal stress on the physiology and bacterial communities of two key Mediterranean gorgonians. Appl. Environ. Microbiol. 88(6), e0234021 (2022).
Google Scholar
Arizmendi-Mejía, R. et al. Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral. Coral Reefs 34, 1207–1216 (2015).
Google Scholar
Arizmendi-Mejía, R. et al. Combining genetic and demographic data for the conservation of a mediterranean marine habitat-forming species. PLoS ONE 10, e0119585 (2015).
Google Scholar
Ponti, M. et al. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE 9(7), e102782 (2014).
Google Scholar
Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28(5), 1153–1166 (2018).
Gómez-Gras, D. et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecol. Lett. 24(5), 1038–1051 (2021).
Google Scholar
Boavida, J., Assis, J., Silva, I., & Serrão, E. A. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Sci. Rep. 6(1) (2016).
Linares, C., Doak, D., Coma, R., Diaz, D. & Zabala, M. Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88, 918–928 (2007).
Google Scholar
Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrates. Estuar. Coast. Shef Sci. 47, 459–470 (1998).
Google Scholar
Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: Implication for population dynamics. Invertebr. Biol. 127, 1–11 (2008).
Google Scholar
Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: The interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
Google Scholar
Ledoux, J. et al. Postglacial range expansion shaped the spatial genetic structure in a marine habitat-forming species: Implications for conservation plans in the Eastern Adriatic Sea. J. Biogeogr. 45, 2645–2657 (2018).
Google Scholar
Dias, V. et al. High coral bycatch in bottom-set gillnet coastal fisheries reveals rich coral habitats in Southern Portugal. Front. Mar. Sci. 7, 1–16 (2020).
Google Scholar
Cebrian, E., Linares, C., Marshall, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invas. 14, 2647–2656 (2012).
Google Scholar
Mateos-Molina, D. et al. Assessing consequences of land cover changes on sediment deliveries to coastal waters at regional level over the last two decades in the northwestern Mediterranean Sea. Ocean Coast. Manag. 116, 435–442 (2015).
Google Scholar
Gómez-Gras, D. et al. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B. 288, 20212384 (2021).
Google Scholar
Otero, M. M., Numa, C., Bo, M., Orejas, C., Garrabou, J. et al., Overview of the conservation status of Mediterranean anthozoans. IUCN, Malaga, Spain, 73 (2017).
Bensoussan, N., Cebrian, E., Dominici, J. M., Kersting, D. K., Kipson, S., et al. Using CMEMS and the Mediterranean Marine protected Area sentinel network to track ocean warming effects in coastal areas. In: Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. 3 (2019).
Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).
Google Scholar
Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: insights from a multi-specific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).
Google Scholar
Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. Series B 34, 187–220 (1972).
Google Scholar
Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).
Google Scholar
Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. C. Chemoth. Rep. 50(3), 163–170 (1966).
Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Fronts Mar. Sci. 4 (2017).
Darmaraki, S. et al. Future evolution of marine heatwaves in the mediterranean sea. Clim. Dyn. 53, 1371–1392 (2019).
Google Scholar
Coles, S. L., Jokiel, P. L. & Lewis, C. R. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac. Sci. 30, 156–166 (1976).
Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).
Google Scholar
Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).
Google Scholar
Jensen, L. F. et al. Local adaptation in brown trout early life-history traits: Implications for climate change adaptability. Proc. R. Soc. B Biol. Sci. 275, 2859–2868 (2008).
Google Scholar
Kuo, E. S. L. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar. Ecol.: Prog. Ser. 388, 137–146 (2009).
Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).
Google Scholar
Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. Biol. Sci. B 276, 2893–2901 (2009).
Google Scholar
Gates, R. D. & Edmunds, P. J. The physiological mechanisms of acclimatization in tropical reef corals. Am. Zool. 39, 30–43 (1999).
Google Scholar
West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).
Google Scholar
Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ’memory’ in a reef coral?. Mar. Biol. 162, 479–483 (2015).
Google Scholar
Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627 (2017).
Google Scholar
Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Change 10, 254–259 (2020).
Google Scholar
Howells, E. J., Abrego, D., Liew, Y. J., Burt, J. A., Meyer, E. & Aranda, M. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).
Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).
Google Scholar
Hague, M. & Routman, E. Does population size affect genetic diversity? A test with sympatric lizard species. Heredity 116, 92–98 (2016).
Google Scholar
Gurgel, C. F. D., Camacho, O., Minne, A. J., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30(7), 1199–1206 (2020).
Google Scholar
Ledoux, J.-B. et al. Assessing the impact of population decline on mating system in the overexploited Mediterranean red coral. Aquat. Conserv: Mar. Freshw. Ecosyst. 30(6), 1149–1159 (2020).
Google Scholar
Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
Google Scholar
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Nat. Acad. Sci. USA 101, 15261–15264 (2004).
Google Scholar
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Cons. 170, 56–63 (2014).
Google Scholar
Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Biol. Ecol. 444, 38–45 (2013).
Google Scholar
Darmaraki, S., Somot, S., Sevault, F. & Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823 (2019).
Google Scholar
Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).
Google Scholar
Pilczynska, J. et al. Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean. Peer J 7, e6794 (2019).
Google Scholar
Gugliotti, E. F., DeLorenzo, M. E. & Etnoyer, P. J. Depth-dependent temperature variability in the Southern California bight with implications for the cold-water gorgonian octocoral Adelogorgia phyllosclera. J. Exp. Mar. Biol. Ecol. 514–515, 118–126 (2019).
Google Scholar
Aurelle, D. et al. Genetic insights into recolonization processes of Mediterranean octocorals. Mar. Biol. 167, 73 (2020).
Google Scholar
Morikawa, M. K., & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Nat. Acad. Sci. USA 116(21), 10586 LP–10591 (2019).
Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).
Google Scholar
Brener-Raffalli, K., Vidal-Dupiol, J., Adjeroud, M., Rey, O., Romans, P., et al. Gene expression plasticity and frontloading promote thermotolerance in Pocilloporid corals. bioRxiv 398602 (2018).
Ledoux, J. B. et al. The Genome Sequence of the Octocoral Paramuricea clavata – A Key resource to study the impact of climate change in the Mediterranean. G3 10(9), 2941–2952 (2020).
Google Scholar
Source: Ecology - nature.com