Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).
Google Scholar
Chape, S., Spalding, M. & Jenkins, M. The world’s protected areas: Status, values, and prospects in the twenty-first century. Bioscience 59(7), 623–624 (2009).
Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).
Google Scholar
Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
Google Scholar
Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes. Conserv. Biol. 25, 163–171 (2011).
Google Scholar
Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).
Google Scholar
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).
Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024 (2011).
Google Scholar
Lenoir, J. & Svenning, J. C. Climate-related range shifts: A global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. 117, 4211–4217 (2020).
Google Scholar
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e200114 (2016).
Google Scholar
Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).
Google Scholar
Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Cons. 144, 1472–1480 (2011).
Google Scholar
Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).
Google Scholar
Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. R. Soc. Lond. B 270, 1887–1892 (2003).
Google Scholar
Mahony, M.J. The amphibians. in Remnants of Gondwana: A Natural and Social History of the Gondwana Rainforests of Australia. (eds. Kitching, R.L., Braithwaite, R., & Cavanaugh, J.) (Surrey Beatty & Sons, 2010).
Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s gondwana rainforests. Science 367, 1083–1083 (2020).
Google Scholar
Narsey, S. et al. (2020). Impact of climate change on cloud forests in the Gondwana Rainforests of Australia World Heritage Area. Earth Systems and Climate Change Hub Report.
Newell, D. An update on frog declines from the forests of subtropical eastern Australia in Status of Conservation and Decline of Amphibians: Australia, New Zealand, and Pacific Islands (eds. Heatwole H. and Rowley J. L.) 29–37 (CSIRO, 2018).
DAWE. Bushfire Impacts Vol. 2021 (Commonwealth Department of Agriculture Water and Environment, 2020).
Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).
Google Scholar
Filkov, A. I., Ngo, T., Matthews, S., Telfer, S. & Penman, T. D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment: Retrospective analysis and current trends. J. Saf. Sci. Resil. 1, 44–56 (2020).
Blunden, J. & Arndt, D. S. State of the climate in 2019. Bull. Am. Meteor. Soc. 101, S1–S429 (2020).
Google Scholar
Zhongming, Z., Linong, L., Wangqiang, Z. & Wei, L. AR6 Climate Change 2021: The Physical Science Basis (Springer, 2021).
Laidlaw, M. J., McDonald, W. J. F., Hunter, R. J., Putland, D. A. & Kitching, R. L. The potential impacts of climate change on Australian subtropical rainforest. Aust. J. Bot. 59, 440–449 (2011).
Google Scholar
Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).
Google Scholar
Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).
Google Scholar
Carey, C. & Alexander, M. A. Climate change and amphibian declines: Is there a link?. Divers. Distrib. 9, 111–121 (2003).
Google Scholar
Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).
Google Scholar
Geyle, H. M. et al. Red hot frogs: Identifying the Australian frogs most at risk of extinction. Pac. Conserv. Biol. 28, 211–223 (2021).
Google Scholar
Gillespie, G. R. et al. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247, 108543 (2020).
Google Scholar
Almeida, A. M. et al. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 12, 1–15 (2022).
Google Scholar
Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 1–14 (2022).
Google Scholar
Tiwari, S. et al. Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol. Process. 11(1), 1–13 (2022).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).
Google Scholar
Li, J. et al. Climate refugia of snow leopards in High Asia. Biol. Conserv. 203, 188–196 (2016).
Google Scholar
Searcy, C. A. & Shaffer, B. H. Do ecological niche models accurately identify climatic determinants of species ranges?. Am. Nat. 187, 423–435 (2016).
Google Scholar
Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108857 (2020).
Google Scholar
Anstis, M. Tadpoles and Frogs of Australia (New Holland Publishers Pty Limited, 2017).
Knowles, R., Mahony, M., Armstrong, J. & Donnellan, S. Systematics of sphagnum frogs of the Genus Philoria (Anura: Myobatrachidae) in Eastern Australia, with the description of two new species. Rec. Aust. Mus. 56, 57–74 (2004).
Google Scholar
Mahony, M. J. et al. A new species of Philoria (Anura: Limnodynastidae) from the uplands of the Gondwana Rainforests world heritage area of eastern Australia. Zootaxa 5104, 209–241 (2022).
Google Scholar
Bolitho, L. J., Rowley, J. J. L., Hines, H. B. & Newell, D. Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests. Aust. J. Zool. 67, 231–240 (2021).
Google Scholar
Heard, G. et al. Post-fire impact assessment for priority frogs: northern Philoria. (NESP Threatened Species Recovery Hub Project 8.1.3 report, Brisbane, 2021).
Vanderwal, J. All Future Climate Layers for Australia: 1 km Resolution (James Cook University, 2012).
Torkkola, J. J., Chauvenet, A. L. M., Hines, H. & Oliver, P. M. Distributional modelling, megafires and data gaps highlight probable underestimation of climate change risk for two lizards from Australia’s montane rainforests. Austral Ecol. 47(2), 365–379 (2021).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Geoscience, A. Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR. (Geoscience Australia, 2015).
Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2014). biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRANR-project.org/package=biomod2. Accessed Feb 2021.
Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9, 10365–10376 (2019).
Google Scholar
Thuiller, W. BIOMOD: Optimising predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).
Google Scholar
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonisation, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).
Google Scholar
Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117, 19656–19657 (2020).
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
Google Scholar
Campos-Cerqueira, M. & Mitchell Aide, T. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 2017, 1–10 (2017).
Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).
Google Scholar
Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).
Google Scholar
Fordham, D. A. et al. Extinction debt from climate change for frogs in the wet tropics. Biol. Lett. 12, 20160236 (2016).
Google Scholar
Hoffmann, E. P., Williams, K., Hipsey, M. R. & Mitchell, N. J. Drying microclimates threaten persistence of natural and translocated populations of threatened frogs. Biodivers. Conserv. 30(1), 15–34 (2020).
Google Scholar
Scheele, B. C., Driscoll, D. A., Fischer, J. & Hunter, D. A. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 3, 101 (2012).
Google Scholar
Legge, S. et al. Rapid assessment of the biodiversity impacts of the 2019–2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions. Divers. Distrib. 28, 571–591 (2022).
Google Scholar
Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).
Google Scholar
Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).
Google Scholar
Holz, A., Wood, S. W., Veblen, T. T. & Bowman, D. M. J. S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Change Biol. 21, 445–458 (2015).
Google Scholar
Hutley, L. B., Doley, D., Yates, D. J. & Boonsaner, A. Water balance of an australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Aust. J. Bot. 45, 311–329 (1997).
Google Scholar
Godfree, R. C. et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 12, 1023 (2021).
Google Scholar
Hennessy, K. et al. Climate Change Impacts on Fire-Weather in South-East Australia (Commonwealth Scientific and Industrial Research Organisation, 2005).
Moriondo, M. et al. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 31, 85–95 (2006).
Google Scholar
Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Clim. Change 84, 383–401 (2007).
Google Scholar
Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).
Google Scholar
Scheele, B. C. et al. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 3, e524 (2021).
Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).
Google Scholar
Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
Keppel, G. et al. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
Google Scholar
Selwood, K. E. & Zimmer, H. C. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).
Google Scholar
Source: Ecology - nature.com