in

Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia

  • Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).

    Article 

    Google Scholar 

  • Chape, S., Spalding, M. & Jenkins, M. The world’s protected areas: Status, values, and prospects in the twenty-first century. Bioscience 59(7), 623–624 (2009).

    Google Scholar 

  • Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).

    Article 

    Google Scholar 

  • Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 

    Google Scholar 

  • Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes. Conserv. Biol. 25, 163–171 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Lenoir, J. & Svenning, J. C. Climate-related range shifts: A global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article 

    Google Scholar 

  • Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. 117, 4211–4217 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e200114 (2016).

    Article 

    Google Scholar 

  • Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Cons. 144, 1472–1480 (2011).

    Article 

    Google Scholar 

  • Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. R. Soc. Lond. B 270, 1887–1892 (2003).

    Article 

    Google Scholar 

  • Mahony, M.J. The amphibians. in Remnants of Gondwana: A Natural and Social History of the Gondwana Rainforests of Australia. (eds. Kitching, R.L., Braithwaite, R., & Cavanaugh, J.) (Surrey Beatty & Sons, 2010).

  • Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s gondwana rainforests. Science 367, 1083–1083 (2020).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • Narsey, S. et al. (2020). Impact of climate change on cloud forests in the Gondwana Rainforests of Australia World Heritage Area. Earth Systems and Climate Change Hub Report.

  • Newell, D. An update on frog declines from the forests of subtropical eastern Australia in Status of Conservation and Decline of Amphibians: Australia, New Zealand, and Pacific Islands (eds. Heatwole H. and Rowley J. L.) 29–37 (CSIRO, 2018).

  • DAWE. Bushfire Impacts Vol. 2021 (Commonwealth Department of Agriculture Water and Environment, 2020).

    Google Scholar 

  • Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).

    Article 
    ADS 

    Google Scholar 

  • Filkov, A. I., Ngo, T., Matthews, S., Telfer, S. & Penman, T. D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment: Retrospective analysis and current trends. J. Saf. Sci. Resil. 1, 44–56 (2020).

    Google Scholar 

  • Blunden, J. & Arndt, D. S. State of the climate in 2019. Bull. Am. Meteor. Soc. 101, S1–S429 (2020).

    Article 

    Google Scholar 

  • Zhongming, Z., Linong, L., Wangqiang, Z. & Wei, L. AR6 Climate Change 2021: The Physical Science Basis (Springer, 2021).

    Google Scholar 

  • Laidlaw, M. J., McDonald, W. J. F., Hunter, R. J., Putland, D. A. & Kitching, R. L. The potential impacts of climate change on Australian subtropical rainforest. Aust. J. Bot. 59, 440–449 (2011).

    Article 

    Google Scholar 

  • Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).

    Article 

    Google Scholar 

  • Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Carey, C. & Alexander, M. A. Climate change and amphibian declines: Is there a link?. Divers. Distrib. 9, 111–121 (2003).

    Article 

    Google Scholar 

  • Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).

    Article 
    ADS 

    Google Scholar 

  • Geyle, H. M. et al. Red hot frogs: Identifying the Australian frogs most at risk of extinction. Pac. Conserv. Biol. 28, 211–223 (2021).

    Article 

    Google Scholar 

  • Gillespie, G. R. et al. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247, 108543 (2020).

    Article 

    Google Scholar 

  • Almeida, A. M. et al. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 12, 1–15 (2022).

    Article 

    Google Scholar 

  • Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 1–14 (2022).

    Article 
    ADS 

    Google Scholar 

  • Tiwari, S. et al. Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol. Process. 11(1), 1–13 (2022).

    Article 

    Google Scholar 

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2018).

    Article 

    Google Scholar 

  • Li, J. et al. Climate refugia of snow leopards in High Asia. Biol. Conserv. 203, 188–196 (2016).

    Article 

    Google Scholar 

  • Searcy, C. A. & Shaffer, B. H. Do ecological niche models accurately identify climatic determinants of species ranges?. Am. Nat. 187, 423–435 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108857 (2020).

    Article 

    Google Scholar 

  • Anstis, M. Tadpoles and Frogs of Australia (New Holland Publishers Pty Limited, 2017).

    Google Scholar 

  • Knowles, R., Mahony, M., Armstrong, J. & Donnellan, S. Systematics of sphagnum frogs of the Genus Philoria (Anura: Myobatrachidae) in Eastern Australia, with the description of two new species. Rec. Aust. Mus. 56, 57–74 (2004).

    Article 

    Google Scholar 

  • Mahony, M. J. et al. A new species of Philoria (Anura: Limnodynastidae) from the uplands of the Gondwana Rainforests world heritage area of eastern Australia. Zootaxa 5104, 209–241 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bolitho, L. J., Rowley, J. J. L., Hines, H. B. & Newell, D. Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests. Aust. J. Zool. 67, 231–240 (2021).

    Article 

    Google Scholar 

  • Heard, G. et al. Post-fire impact assessment for priority frogs: northern Philoria. (NESP Threatened Species Recovery Hub Project 8.1.3 report, Brisbane, 2021).

  • Vanderwal, J. All Future Climate Layers for Australia: 1 km Resolution (James Cook University, 2012).

    Google Scholar 

  • Torkkola, J. J., Chauvenet, A. L. M., Hines, H. & Oliver, P. M. Distributional modelling, megafires and data gaps highlight probable underestimation of climate change risk for two lizards from Australia’s montane rainforests. Austral Ecol. 47(2), 365–379 (2021).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Geoscience, A. Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR. (Geoscience Australia, 2015).

  • Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2014). biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRANR-project.org/package=biomod2. Accessed Feb 2021.

  • Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9, 10365–10376 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thuiller, W. BIOMOD: Optimising predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).

    Article 
    ADS 

    Google Scholar 

  • MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonisation, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).

    Article 

    Google Scholar 

  • Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117, 19656–19657 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Campos-Cerqueira, M. & Mitchell Aide, T. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 2017, 1–10 (2017).

    Google Scholar 

  • Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar 

  • Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).

    Article 
    ADS 

    Google Scholar 

  • Fordham, D. A. et al. Extinction debt from climate change for frogs in the wet tropics. Biol. Lett. 12, 20160236 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, E. P., Williams, K., Hipsey, M. R. & Mitchell, N. J. Drying microclimates threaten persistence of natural and translocated populations of threatened frogs. Biodivers. Conserv. 30(1), 15–34 (2020).

    Article 

    Google Scholar 

  • Scheele, B. C., Driscoll, D. A., Fischer, J. & Hunter, D. A. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 3, 101 (2012).

    Article 

    Google Scholar 

  • Legge, S. et al. Rapid assessment of the biodiversity impacts of the 2019–2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions. Divers. Distrib. 28, 571–591 (2022).

    Article 

    Google Scholar 

  • Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Holz, A., Wood, S. W., Veblen, T. T. & Bowman, D. M. J. S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Change Biol. 21, 445–458 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hutley, L. B., Doley, D., Yates, D. J. & Boonsaner, A. Water balance of an australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Aust. J. Bot. 45, 311–329 (1997).

    Article 

    Google Scholar 

  • Godfree, R. C. et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 12, 1023 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hennessy, K. et al. Climate Change Impacts on Fire-Weather in South-East Australia (Commonwealth Scientific and Industrial Research Organisation, 2005).

    Google Scholar 

  • Moriondo, M. et al. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 31, 85–95 (2006).

    Article 

    Google Scholar 

  • Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Clim. Change 84, 383–401 (2007).

    Article 
    ADS 

    Google Scholar 

  • Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).

    Article 

    Google Scholar 

  • Scheele, B. C. et al. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 3, e524 (2021).

    Google Scholar 

  • Rudin-Bitterli, T. S., Evans, J. P. & Mitchell, N. J. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 74, 1186–1199 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).

    Google Scholar 

  • Keppel, G. et al. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar 

  • Selwood, K. E. & Zimmer, H. C. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Natural selection under conventional and organic cropping systems affect root architecture in spring barley

    Variation in blubber cortisol levels in a recovering humpback whale population inhabiting a rapidly changing environment