Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.
Google Scholar
Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881.
Google Scholar
Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.
Google Scholar
Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun. 2019;10:2770.
Google Scholar
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
Google Scholar
Sorensen JW, Shade A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos Trans R Soc B Biolog Sci. 2020;375:20190255.
Google Scholar
Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.
Google Scholar
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.
Google Scholar
Lauber Christian L, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.
Google Scholar
Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.
Google Scholar
Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.
Google Scholar
Barberan A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015;112:5756–61.
Google Scholar
Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.
Google Scholar
Eisenlord SD, Zak DR, Upchurch RA. Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence. Ecol Evol. 2012;2:538–49.
Google Scholar
Glassman SI, Lubetkin KC, Chung JA, Bruns TD. The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree “islands” at a fine scale. Ecosphere. 2017;8:e01677.
Google Scholar
Whitaker Rachel J, Grogan Dennis W, Taylor John W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–8.
Google Scholar
Amor DR, Ratzke C, Gore J. Transient invaders can induce shifts between alternative stable states of microbial communities. Sci Adv. 2020;6:eaay8676.
Google Scholar
Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10:2235–45.
Google Scholar
Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci USA. 2007;104:10282.
Google Scholar
Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol. 2012;18:1918–27.
Google Scholar
Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.
Google Scholar
Chambers CA, Smith SE, Smith FA. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 1980;85:47–62.
Google Scholar
van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems. 2010;13:683–95.
Google Scholar
Young IM, Ritz K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000;53:201–13.
Google Scholar
Kabir Z. Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci. 2005;85:23–29.
Google Scholar
Bell T, Tylianakis JM. Microbes in the anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proc R Soc B Biol Sci. 2016;283;20160896.
Google Scholar
Dang K, Gong X, Zhao G, Wang H, Ivanistau A, Feng B, Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield. Front Microbiol. 2020;11;601054.
Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–40.
Google Scholar
Mummey DL, Rillig MC. Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol. 2008;64:260–70.
Google Scholar
Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L. Priority effects during fungal community establishment in beech wood. ISME J. 2015;9:2246–60.
Google Scholar
Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol. 2017;31:407–18.
Google Scholar
Schmidt SK, Nemergut DR, Darcy JL, Lynch R. Do bacterial and fungal communities assemble differently during primary succession? Mol Ecol. 2014;23:254–8.
Google Scholar
Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018;12:1154–62.
Google Scholar
Castaño C, Bonet JA, Oliva J, Farré G, Martínez de Aragón J, Parladé J, et al. Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions. Fungal Ecol. 2019;41:279–88.
Google Scholar
Garbelotto M, Smith T, Schweigkofler W. Variation in rates of spore deposition of Fusarium circinatum, the causal agent of pine pitch canker, over a 12-month-period at two locations in Northern California. Phytopathology®. 2007;98:137–43.
Google Scholar
Bowers RM, Clements N, Emerson JB, Wiedinmyer C, Hannigan MP, Fierer N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol. 2013;47:12097–106.
Google Scholar
Trexler RV, Bell TH. Testing sustained soil-to-soil contact as an approach for limiting the abiotic influence of source soils during experimental microbiome transfer. FEMS Microbiol Lett. 2019;366:fnz228.
Google Scholar
King, WL, Kaminsky LM, Gannett M, Thompson GL, Kao-Kniffin J, Bell TH. Soil salinization accelerates microbiome stabilization in iterative selections for plant performance. New Phytol. 2021. https://doi.org/10.1111/nph.17774. Advance online publication.
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
Google Scholar
Apprill A, McNally S, Parsons RJ, Weber LK. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
Google Scholar
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.
Google Scholar
Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005;5:28.
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.
Google Scholar
Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.
Google Scholar
R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2012;Vienna;Austria
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. Vegan: community ecology package. R Package Version 2.2-1. 2015;2:1–2. https://cran.r-project.org/web/packages/vegan/index.html.
Ogle, DH, Wheeler P, Dinno A. FSA: fisheries stock analysis; 2020. https://cran.r-project.org/web/packages/FSA/index.html
Lahti L, Shetty S. Tools for microbiome analysis in R. Microbiome package. Bioconductor; 2017. https://microbiome.github.io/tutorials/
Bell T. Experimental tests of the bacterial distance–decay relationship. ISME J. 2010;4:1357–65.
Google Scholar
Boynton PJ, Peterson CN, Pringle A. Superior dispersal ability can lead to persistent ecological dominance throughout succession. Appl Environ Microbiol. 2019;85:e02421–18.
Google Scholar
Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.
Google Scholar
Dickie A, N IA, Reich PB. Ectomycorrhizal fungal communities at forest edges. J Ecol. 2005;93:244–55.
Google Scholar
Vannette, RL, McMunn MS, Hall GW, Mueller TG, Munkres I, Perry D. Fungi are more dispersal limited than bacteria among flowers. https://www.biorxiv.org/content/10.1101/2020.05.19.104968v2. 2021.
Zhang G, Wei G, Wei F, Chen Z, He M, Jiao S, et al., Dispersal limitation plays stronger role in the community assembly of fungi relative to bacteria in rhizosphere across the arable area of medicinal plant. Front Microbiol. 2021;12;713523.
Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.
Google Scholar
Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett. 2010;13:675–84.
Google Scholar
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.
Google Scholar
Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–94.
Google Scholar
Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE. 2017;12:e0180442.
Google Scholar
Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat Plants. 2020;6:483–91.
Google Scholar
Riedo, J, Wettstein FE, Rösch A, Herzog C, Banerjee S, Büchi L, et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ Sci Technol. 2021;55;2919–2928.
Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP, Fernandes-Júnior PI, et al., Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front Microbiol. 2019;10;648.
Google Scholar
Source: Ecology - nature.com