in

Farm-scale differentiation of active microbial colonizers

  • Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.

    CAS 
    Article 

    Google Scholar 

  • Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881.

    CAS 
    Article 

    Google Scholar 

  • Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.

    CAS 
    Article 

    Google Scholar 

  • Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun. 2019;10:2770.

    Article 

    Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.

    Article 

    Google Scholar 

  • Sorensen JW, Shade A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos Trans R Soc B Biolog Sci. 2020;375:20190255.

    CAS 
    Article 

    Google Scholar 

  • Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.

    CAS 
    Article 

    Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.

    CAS 
    Article 

    Google Scholar 

  • Lauber Christian L, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.

    CAS 
    Article 

    Google Scholar 

  • Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.

    Article 

    Google Scholar 

  • Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.

    Article 

    Google Scholar 

  • Barberan A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015;112:5756–61.

    CAS 
    Article 

    Google Scholar 

  • Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.

    Article 

    Google Scholar 

  • Eisenlord SD, Zak DR, Upchurch RA. Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence. Ecol Evol. 2012;2:538–49.

    Article 

    Google Scholar 

  • Glassman SI, Lubetkin KC, Chung JA, Bruns TD. The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree “islands” at a fine scale. Ecosphere. 2017;8:e01677.

    Article 

    Google Scholar 

  • Whitaker Rachel J, Grogan Dennis W, Taylor John W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–8.

    CAS 
    Article 

    Google Scholar 

  • Amor DR, Ratzke C, Gore J. Transient invaders can induce shifts between alternative stable states of microbial communities. Sci Adv. 2020;6:eaay8676.

    CAS 
    Article 

    Google Scholar 

  • Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10:2235–45.

    Article 

    Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci USA. 2007;104:10282.

    CAS 
    Article 

    Google Scholar 

  • Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol. 2012;18:1918–27.

    Article 

    Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.

    CAS 
    Article 

    Google Scholar 

  • Chambers CA, Smith SE, Smith FA. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 1980;85:47–62.

    CAS 
    Article 

    Google Scholar 

  • van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems. 2010;13:683–95.

    Article 

    Google Scholar 

  • Young IM, Ritz K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000;53:201–13.

    Article 

    Google Scholar 

  • Kabir Z. Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci. 2005;85:23–29.

    Article 

    Google Scholar 

  • Bell T, Tylianakis JM. Microbes in the anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proc R Soc B Biol Sci. 2016;283;20160896.

    Article 

    Google Scholar 

  • Dang K, Gong X, Zhao G, Wang H, Ivanistau A, Feng B, Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield. Front Microbiol. 2020;11;601054.

  • Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–40.

    Article 

    Google Scholar 

  • Mummey DL, Rillig MC. Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol. 2008;64:260–70.

    CAS 
    Article 

    Google Scholar 

  • Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L. Priority effects during fungal community establishment in beech wood. ISME J. 2015;9:2246–60.

    Article 

    Google Scholar 

  • Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol. 2017;31:407–18.

    Article 

    Google Scholar 

  • Schmidt SK, Nemergut DR, Darcy JL, Lynch R. Do bacterial and fungal communities assemble differently during primary succession? Mol Ecol. 2014;23:254–8.

    CAS 
    Article 

    Google Scholar 

  • Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018;12:1154–62.

    CAS 
    Article 

    Google Scholar 

  • Castaño C, Bonet JA, Oliva J, Farré G, Martínez de Aragón J, Parladé J, et al. Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions. Fungal Ecol. 2019;41:279–88.

    Article 

    Google Scholar 

  • Garbelotto M, Smith T, Schweigkofler W. Variation in rates of spore deposition of Fusarium circinatum, the causal agent of pine pitch canker, over a 12-month-period at two locations in Northern California. Phytopathology®. 2007;98:137–43.

    Article 

    Google Scholar 

  • Bowers RM, Clements N, Emerson JB, Wiedinmyer C, Hannigan MP, Fierer N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol. 2013;47:12097–106.

    CAS 
    Article 

    Google Scholar 

  • Trexler RV, Bell TH. Testing sustained soil-to-soil contact as an approach for limiting the abiotic influence of source soils during experimental microbiome transfer. FEMS Microbiol Lett. 2019;366:fnz228.

    CAS 
    Article 

    Google Scholar 

  • King, WL, Kaminsky LM, Gannett M, Thompson GL, Kao-Kniffin J, Bell TH. Soil salinization accelerates microbiome stabilization in iterative selections for plant performance. New Phytol. 2021. https://doi.org/10.1111/nph.17774. Advance online publication.

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    Article 

    Google Scholar 

  • Apprill A, McNally S, Parsons RJ, Weber LK. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.

    Article 

    Google Scholar 

  • Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.

    CAS 
    Article 

    Google Scholar 

  • Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005;5:28.

    Article 

    Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    Article 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    Article 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.

    CAS 
    Article 

    Google Scholar 

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.

    Article 

    Google Scholar 

  • R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2012;Vienna;Austria

  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS 
    Article 

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. Vegan: community ecology package. R Package Version 2.2-1. 2015;2:1–2. https://cran.r-project.org/web/packages/vegan/index.html.

  • Ogle, DH, Wheeler P, Dinno A. FSA: fisheries stock analysis; 2020. https://cran.r-project.org/web/packages/FSA/index.html

  • Lahti L, Shetty S. Tools for microbiome analysis in R. Microbiome package. Bioconductor; 2017. https://microbiome.github.io/tutorials/

  • Bell T. Experimental tests of the bacterial distance–decay relationship. ISME J. 2010;4:1357–65.

    Article 

    Google Scholar 

  • Boynton PJ, Peterson CN, Pringle A. Superior dispersal ability can lead to persistent ecological dominance throughout succession. Appl Environ Microbiol. 2019;85:e02421–18.

    CAS 
    Article 

    Google Scholar 

  • Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.

    Article 

    Google Scholar 

  • Dickie A, N IA, Reich PB. Ectomycorrhizal fungal communities at forest edges. J Ecol. 2005;93:244–55.

    Article 

    Google Scholar 

  • Vannette, RL, McMunn MS, Hall GW, Mueller TG, Munkres I, Perry D. Fungi are more dispersal limited than bacteria among flowers. https://www.biorxiv.org/content/10.1101/2020.05.19.104968v2. 2021.

  • Zhang G, Wei G, Wei F, Chen Z, He M, Jiao S, et al., Dispersal limitation plays stronger role in the community assembly of fungi relative to bacteria in rhizosphere across the arable area of medicinal plant. Front Microbiol. 2021;12;713523.

  • Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.

    Article 

    Google Scholar 

  • Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett. 2010;13:675–84.

    Article 

    Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.

    Article 

    Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–94.

    Article 

    Google Scholar 

  • Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE. 2017;12:e0180442.

    Article 

    Google Scholar 

  • Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat Plants. 2020;6:483–91.

    CAS 
    Article 

    Google Scholar 

  • Riedo, J, Wettstein FE, Rösch A, Herzog C, Banerjee S, Büchi L, et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ Sci Technol. 2021;55;2919–2928.

  • Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP, Fernandes-Júnior PI, et al., Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front Microbiol. 2019;10;648.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Empowering people to adapt on the frontlines of climate change

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award