in

Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna

  • Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hylland, K. & Vethaak, A. D. Ecological Impacts of Toxic Chemicals (Bentham Science Publishers, 2012).

  • Bossart, G. D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 48, 676–690 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).

    Article 

    Google Scholar 

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).

    Article 

    Google Scholar 

  • Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 1–9 (2020).

    Article 

    Google Scholar 

  • Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Savoca, M. S., McInturf, A. G. & Hazen, E. L. Plastic ingestion by marine fish is widespread and increasing. Glob. Change Biol. 27, 2188–2199 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wilcox, C., Van Sebille, E. & Hardesty, B. D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl Acad. Sci. USA 112, 11899–11904 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fossi, M. C. et al. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 64, 2374–2379 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Germanov, E. S., Marshall, A. D., Bejder, L., Fossi, M. C. & Loneragan, N. R. Microplastics: no small problem for filter-feeding megafauna. Trends Ecol. Evol. 33, 227–232 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Alava, J. J. Modeling the bioaccumulation and biomagnification potential of microplastics in a Cetacean foodweb of the Northeastern pacific: a prospective tool to assess the risk exposure to plastic particles. Front. Mar. Sci. 7, 566101 (2020).

    Article 

    Google Scholar 

  • Zantis, L. J. et al. Assessing microplastic exposure of large marine filter-feeders. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.151815. (2021).

  • Garcia-Garin, O. et al. Ingestion of synthetic particles by fin whales feeding off Western Iceland in summer. Chemosphere 279, 130564 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sims, D. W. & Quayle, V. A. Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature 393, 460–465 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).

    Article 

    Google Scholar 

  • Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, X., Liang, J., Zhu, M., Zhao, Y. & Zhang, B. Microplastics in seawater and zooplankton from the Yellow Sea*. Environ. Pollut. 242, 585–595 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mahara, N. et al. Assessing size-based exposure to microplastic particles and ingestion pathways in zooplankton and herring in a coastal pelagic ecosystem of British Columbia, Canada. Mar. Ecol. Prog. Ser. 683, 139–155 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Besseling, E. et al. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248–252 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baini, M. et al. First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic/planktonic samples and cetacean blubber. Anal. Methods 9, 1512–1520 (2017).

    Article 
    CAS 

    Google Scholar 

  • Goldbogen, J. A. et al. How Baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kawamura, A. A Review of Food of Balaenopterid Whales (AGRIS, 1980).

  • Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2015).

    Article 
    ADS 

    Google Scholar 

  • Clapham, P. J., Leatherwood, S., Szczepaniak, I. & Brownell, R. L. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919–1926. Mar. Mammal. Sci. 13, 368–394 (1997).

    Article 

    Google Scholar 

  • Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).

  • Goldbogen, J. A., Potvin, J. & Shadwick, R. E. Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proc. R. Soc. B: Biol. Sci. 277, 861–868 (2010).

    Article 

    Google Scholar 

  • Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 169–182 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lindstedt, S. & Caldor, W. Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56, 1–16 (1981).

    Article 

    Google Scholar 

  • Banavar, J. R. et al. A general basis for quarter-power scaling in animals. Proc. Natl Acad. Sci. USA 107, 15816–15820 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fossi, M. C. et al. Fin whales and microplastics: the Mediterranean Sea and the Sea of Cortez scenarios. Environ. Pollut. 209, 68–78 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Croll et al. Encyclopedia of Marine Mammals 2nd edn (Elsevier, 2018).

  • De Vos, A., Pattiaratchi, C. B. & Harcourt, R. G. Inter-annual variability in blue whale distribution off Southern Sri Lanka between 2011 and 2012. J. Mar. Sci. Eng. 2, 534–550 (2014).

    Article 

    Google Scholar 

  • Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedlaender, A. S. et al. The advantages of diving deep: fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. https://doi.org/10.1111/1365-2435.13471 (2019).

  • Kashiwabara, L. et al. Microplastics and microfibers in surface waters of Monterey Bay National Marine Sanctuary, California. Mar. Pollut. Bull. 165, 112148 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lattin, G. L., Moore, C. J., Zellers, A. F., Moore, S. L. & Weisberg, S. B. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 49, 291–294 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sutton, R. et al. Understanding Microplastic Levels, Pathways, and Transport in the San Francisco Bay Region. (2019).

  • Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desforges, J. P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contamination Toxicol. 69, 320–330 (2015).

    Article 
    CAS 

    Google Scholar 

  • Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fossi, M. C., Baini, M. & Simmonds, M. P. Cetaceans as ocean health indicators of marine litter impact at global scale. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.586627 (2020).

  • Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere 228, 93–100 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ory, N. C., Gallardo, C., Lenz, M. & Thiel, M. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environ. Pollut. 240, 566–573 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grigorakis, S., Mason, S. A. & Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 169, 233–238 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gigault, J. et al. Current opinion: What is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barboza, L. G. A. et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 717, 134625 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1–10 (2020).

    Article 

    Google Scholar 

  • Collard, F. et al. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 229, 1000–1005 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wieczorek, A. M. et al. Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic. Front. Mar. Sci. 5, 1–9 (2018).

    Google Scholar 

  • Boerger, C. M., Lattin, G. L., Moore, S. L. & Moore, C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60, 2275–2278 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davison, P. & Asch, R. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432, 173–180 (2011).

    Article 
    ADS 

    Google Scholar 

  • Lusher, A. L., Donnell, C. O., Officer, R. & Connor, I. O. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 73, 1214–1225 (2016).

    Article 

    Google Scholar 

  • Hamilton, B. M. et al. Prevalence of microplastics and anthropogenic debris within a deep-sea food web. Mar. Ecol. Prog. Ser. 675, 23–33 (2021).

    Article 
    ADS 

    Google Scholar 

  • Sun, X. et al. Ingestion of microplastics by natural zooplankton groups in the northern. Mar. Pollut. Bull. 115, 217–224 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mayo, C. A. & Marx, M. K. Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68, 2214–2220 (1990).

    Article 

    Google Scholar 

  • Friedlaender, A. S. et al. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar. Ecol. Prog. Ser. 395, 91–100 (2009).

    Article 
    ADS 

    Google Scholar 

  • Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gregorietti, M. et al. Cetacean presence and distribution in the central Mediterranean Sea and potential risks deriving from plastic pollution. Mar. Pollut. Bull. 173, 112943 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosel, P. E., Wilcox, L. A., Yamada, T. K. & Mullin, K. D. A new species of baleen whale (Balaenoptera) from the Gulf of Mexico, with a review of its geographic distribution. Marine Mammal Sci. https://doi.org/10.1111/mms.12776 (2021).

  • Yong, M. M. H. et al. Microplastics in fecal samples of whale sharks (Rhincodon typus) and from surface water in the Philippines. Microplastics Nanoplastics 1, 17 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fossi, M. C. et al. Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 199, 48–58 (2017).

    CAS 

    Google Scholar 

  • Cade, D. E. et al. Predator‐scale spatial analysis of intra‐patch prey distribution reveals the energetic drivers of rorqual whale super‐group formation. Funct. Ecol. 35, 894–908 (2021).

    Article 
    CAS 

    Google Scholar 

  • Goldbogen, J. A. et al. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from Medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).

    Article 

    Google Scholar 

  • Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelem. 9, 34 (2021).

    Article 

    Google Scholar 

  • Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).

    Article 
    ADS 

    Google Scholar 

  • Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).

    PubMed 

    Google Scholar 

  • Hadfield, J. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • Hipfner, J. M. et al. Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs. Environ. Pollut. 239, 215–222 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doyle, M. J., Watson, W., Bowlin, N. M. & Sheavly, S. B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71, 41–52 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Witteveen, B. H., Worthy, G. A. J., Foy, R. J. & Wynne, K. M. Modeling the diet of humpback whales: An approach using stable carbon and nitrogen isotopes in a Bayesian mixing model. Mar. Mammal. Sci. 28, E233–E250 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    In nanotube science, is boron nitride the new carbon?

    Machine learning facilitates “turbulence tracking” in fusion reactors