in

Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber

  • 1.

    Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 2483–2490 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Herrera-Flores, J. A., Stubbs, T. L. & Benton, M. J. Ecomorphological diversification of squamates in the Cretaceous. R. Soc. Open Sci. 8, 201961 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B 365, 3667–3679 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Roelants, K. et al. Global patterns of diversifcation in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, 900–903 (2012).

    Google Scholar 

  • 7.

    Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Buggs, R. J. The deepening of Darwin’s abominable mystery. Nat. Ecol. Evol. 1, 0169 (2017).

    Google Scholar 

  • 9.

    Friis, E. M., Crane, P. R., Pedersen, K. R., Stampanoni, M. & Marone, F. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528, 551–554 (2015).

    PubMed 

    Google Scholar 

  • 10.

    Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

  • 11.

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 251–293 (2006).

    Google Scholar 

  • 12.

    Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B 286, 20190099 (2019).

    PubMed Central 

    Google Scholar 

  • 13.

    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).

    PubMed 

    Google Scholar 

  • 14.

    Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 569–583 (2012).

    Google Scholar 

  • 15.

    Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).

    PubMed 

    Google Scholar 

  • 17.

    Cruickshank, R. D. & Ko, K. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. J. Asian Earth Sci. 21, 441–455 (2003).

    Google Scholar 

  • 18.

    Shi, G. H. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    Google Scholar 

  • 19.

    Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 166, 11345–11350 (2019).

    Google Scholar 

  • 20.

    Xing, L. D. & Qiu, L. Zircon U–Pb age constraints on the Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).

    Google Scholar 

  • 21.

    Xia, F. Y., Yang, G., Zhang, Q. & Shi, G. L. Amber Lives Through Time and Space (Beijing Science Press, 2015).

  • 22.

    Poinar, G. O. & Brown, A. E. A green algae (Chaetophorales: Chaetophoraceae) in Burmese amber. Hist. Biol. 33, 323–327 (2019).

    Google Scholar 

  • 23.

    Liu, Z. J., Huang, D., Cai, C. Y. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Poinar, G. O. & Chambers, K. L. Tropidogyne pentaptera sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity 10, 135–140 (2017).

    Google Scholar 

  • 25.

    Poinar, G. O. & Chambers, K. L. Palaeoanthella huangii gen. and sp. nov., an Early Cretaceous flower (Angiospermae) in Burmese amber. SIDA 21, 2087–2092 (2005).

    Google Scholar 

  • 26.

    Goldblatt, P. An analysis of the flora of Southern Africa: its characteristics, relationships, and orgins. Ann. Mo. Bot. Gard. 65, 369–436 (1978).

    Google Scholar 

  • 27.

    Verboom, G. A. et al. in Fynbos: Ecology, Evolution and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 93–118 (Oxford Univ. Press, 2014).

  • 28.

    Hauenschild, F., Favre, A., Michalak, I. & Muellner-Riehl, A. N. The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). J. Biogeogr. 45, 2669–2677 (2018).

    Google Scholar 

  • 29.

    Onstein, R. E. & Linder, H. P. Beyond climate: convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate. J. Ecol. 104, 665–677 (2016).

    Google Scholar 

  • 30.

    Brown, S., Scott, A. C., Glasspool, I. J. & Collinson, M. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).

    Google Scholar 

  • 31.

    Richardson, J. E. et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412, 181–183 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Pillans, N. S. The genus Phylica. J. S. Afr. Bot. 8, 1–164 (1942).

    Google Scholar 

  • 33.

    Rebelo, T. et al. in The vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 52–219 (South African National Biodiversity Institute, 2006).

  • 34.

    Gimingham, C. H. & Cowling, R. The ecology of fynbos: nutrients, fire and diversity. J. Ecol. 81, 195–196 (1993).

    Google Scholar 

  • 35.

    Richardson, J. E., Fay, M. F., Cronk, Q. C. B. & Cronk, M. W. Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 57, 816–827 (2003).

    PubMed 

    Google Scholar 

  • 36.

    Richardson, J. E. Molecular Systematics of the Genus Phylica L. With an Emphasis on the Island Species (Edinburgh Univ. Press, 1999).

  • 37.

    Schirarend, C. & Köhler, E. World Pollen and Spore Flora: Rhamnaceae Juss (Scandinavian Univ. Press, 1993).

  • 38.

    Medan, D. & Schirarend, C. in Flowering plants · Dicotyledons (ed. Kubitzki, K.) 320–338 (Springer, 2004).

  • 39.

    Gotelli, M. M., Galati, B. G. & Medan, D. Morphological and ultrastructural studies of floral nectaries in Rhamnaceae. J. Torrey Bot. Soc. 144, 63–73 (2017).

    Google Scholar 

  • 40.

    Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans–a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).

    CAS 

    Google Scholar 

  • 41.

    Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    CAS 

    Google Scholar 

  • 42.

    Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull. 107, 1164–1191 (1995).

    Google Scholar 

  • 43.

    Belcher, C. M., Yearsley, J. M., Hadden, R. M., Mcelwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).

    CAS 

    Google Scholar 

  • 45.

    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).

    CAS 

    Google Scholar 

  • 46.

    Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1241 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Hudspith, V. A. & Belcher, C. M. Fire biases the production of charred flowers: implications for the Cretaceous fossil record. Geology 45, 727–730 (2017).

    Google Scholar 

  • 48.

    Scott, A. C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 11–39 (2010).

    Google Scholar 

  • 49.

    Scott, A. C. The use of charcoal to interpret Cretaceous wildfires and volcanic activity. Glob. Geol. 22, 217–241 (2019).

    Google Scholar 

  • 50.

    Scott, A. C., Cripps, J. A., Nichols, G. J. & Collinson, M. E. The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 1–31 (2000).

    Google Scholar 

  • 51.

    Whtilock, C., Higuera, P. E., McWethy, D. B. & Briles, C. E. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecol. J. 3, 6–23 (2010).

    Google Scholar 

  • 52.

    Bond, W. J. & Keeley, J. E. Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    PubMed 

    Google Scholar 

  • 53.

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous–Paleogene boundary. Nat. Commun. 2, 193 (2011).

    PubMed 

    Google Scholar 

  • 55.

    Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bioscience 59, 593–601 (2009).

    Google Scholar 

  • 56.

    Scott, A. C. Burning Planet. The Story of Fire Through Time (Oxford Univ. Press, 2018).

  • 57.

    Scott, A. C. Fire: A Very Short Introduction (Oxford Univ. Press, 2020).

  • 58.

    Scott, A. C., Bowman, D. J. M. S., Bond, W. J., Pyne, S. J. & Alexander M. Fire on Earth: An Introduction (J. Wiley & Sons Press, 2014).

  • 59.

    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Lenton,T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 289–308 (J. Wiley & Sons Press, 2013).

  • 61.

    Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R. & Kobylinska, J. A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of the central Georgia, USA. Ann. Mo. Bot. Gard. 86, 407–471 (1999).

    Google Scholar 

  • 62.

    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).

    PubMed 

    Google Scholar 

  • 63.

    Cornwell, W. K. et al. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytol. 206, 672–681 (2015).

    PubMed 

    Google Scholar 

  • 64.

    Lamont, B. B. & He, T. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evol. Biol. 12, 223 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    He, T., Lamont, B. B. & Manning, J. A. Cretaceous origin for fire adaptations in the Cape flora. Sci. Rep. 6, 34880 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. New Phytol. 191, 184–196 (2011).

    PubMed 

    Google Scholar 

  • 67.

    Midgley, J. & Bond, W. Pushing back in time, the role of fire in plant evolution. New Phytol. 191, 5–7 (2011).

    PubMed 

    Google Scholar 

  • 68.

    Scott, A. C. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).

    Google Scholar 

  • 69.

    Midgley, J. J., Kruger, L. M. & Skelton, R. How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae “fire-resisters”. S. Afr. J. Bot. 77, 381–386 (2011).

    Google Scholar 

  • 70.

    Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their non-laminarity. New Phytol. 207, 942–947 (2015).

    PubMed 

    Google Scholar 

  • 71.

    Lamont, B. B., He, T. & Yan, Z. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 94, 903–928 (2019).

    PubMed 

    Google Scholar 

  • 72.

    Schwilk, D. W. & Kerr, B. Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99, 431–442 (2002).

    Google Scholar 

  • 73.

    Kilian, D. & Cowling, R. M. Comparative seed biology and co-existence of two fynbos shrub species. J. Veg. Sci. 3, 637–646 (1992).

    Google Scholar 

  • 74.

    Hall, S. A., Newton, R. J., Holmes, P. M., Gaertner, M. & Esler, K. J. Heat and smoke pre‐treatment of seeds to improve restoration of an endangered Mediterranean climate vegetation type. Austral Ecol. 42, 354–366 (2017).

    Google Scholar 

  • 75.

    Ruprecht, E., Fenesi, A., Fodor, E. I., Kuhn, T. & Tklyi, J. Shape determines fire tolerance of seeds in temperate grasslands that are not prone to fire. Perspect. Plant Ecol. 17, 397–404 (2015).

    Google Scholar 

  • 76.

    Mohr, B. A. R. & Friis, E. M. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. 161, 155–167 (2000).

    Google Scholar 

  • 77.

    Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Linder, H. P. Evolution of diversity: the Cape flora. Trends Plant Sci. 10, 536–541 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Linder, H. P. The radiation of the Cape flora, southern Africa. Biol. Rev. 78, 597–638 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Poinar, G. O. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309 (2019).

    Google Scholar 

  • 81.

    Oliveira, I. D. S. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Poinar, G. O., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).

    Google Scholar 

  • 83.

    Cai, C. Y. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 2175 (2019).

    Google Scholar 

  • 84.

    Zhang, W., Li, H., Shih, C., Zhang, A. & Ren, D. Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics 34, 384–406 (2018).

    PubMed 

    Google Scholar 

  • 85.

    Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 5–6 (2019).

    Google Scholar 

  • 86.

    Metcalfe, I. in Biogeography and Geological Evolution of SE Asia (eds Hall, R. & Holloway, J. D.) 25–41 (Backhuys Publishers Press,1998).

  • 87.

    Li, J., Wu, Y., Peng, J. & Batten, D. J. Palynofloral evolution on the northern margin of the Indian Plate, southern Xizang, China during the Cretaceous period and its phytogeographic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 107–122 (2019).

    Google Scholar 

  • 88.

    Smith, A. G., Smith, D. G. & Funnell B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, 2004).

  • 89.

    Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Coetzee, J. A. & Muller, J. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann. Mo. Bot. Gard. 71, 1088–1099 (1984).

    Google Scholar 

  • 91.

    De Villiers, S. E. & Cadman, A. The palynology of Tertiary sediments from a palaeochannel in Namaqualand, South Africa. Palaeontol. Afr. 34, 69–99 (1997).

    Google Scholar 

  • 92.

    De Villiers, S. E. & Cadman, A. An analysis of the palynomorphs obtained from Tertiary sediments at Koingnaas, Namaqualand, South Africa. J. Afr. Earth Sci. 33, 17–47 (2001).

    Google Scholar 

  • 93.

    Sandersen, A., Scott, L., McLachlan, I. R. & Hancox, P. J. Cretaceous biozonation based on terrestrial palynomorphs from two wells in the offshore Orange Basin of South Africa. Palaeontol. Afr. 46, 21–41 (2011).

    Google Scholar 

  • 94.

    Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (1988).

    Google Scholar 

  • 95.

    Scholtz, A. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Ann. S. Afr. Mus. 95, 1–109 (1985).

    Google Scholar 

  • 96.

    Sciscio, L. et al. Fluctuations in Miocene climate and sea levels along the south-western South African coast: inferences from biogeochemistry, palynology and sedimentology. Palaeontol. Afr. 48, 2–18 (2013).

    Google Scholar 

  • 97.

    Roberts, D. L. et al. Miocene fluvial systems and palynofloras at the southwestern tip of Africa: implications for regional and global fluctuations in climate and ecosystems. Earth Sci. Rev. 124, 184–201 (2013).

    Google Scholar 

  • 98.

    Roberts, D. L. et al. Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa. Glob. Planet. Change 150, 1–23 (2017).

    Google Scholar 

  • 99.

    Grimaldi, D., Engel, M. S. & Nascimbene, P. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 3361, 1–72 (2002).

    Google Scholar 

  • 100.

    Mao, Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).

    Google Scholar 

  • 101.

    Smith, R. D. & Ross, A. J. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth Env. Sci. Trans. R. Soc. Edinb. 107, 239–247 (2018).

    Google Scholar 

  • 102.

    Schmidt, A. R. & Dilcher, D. L. Aquatic organisms as amber inclusions and examples from a modern swamp forest. Proc. Natl Acad. Sci. USA 104, 16581–16585 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Cole, L. E., Bhagwat, S. A. & Willis, K. J. Fire in the swamp forest: palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Front. For. Glob. Change 2, 48 (2019).

    Google Scholar 

  • 104.

    Labandeira, C. C. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers (eds Laflamme, M. et al.) 163–216 (Cambridge Univ. Press, 2014).

  • 105.

    Seyfullah, L. J. et al. Production and preservation of resins–past and present. Biol. Rev. 93, 1684–1714 (2018).

    PubMed 

    Google Scholar 

  • 106.

    Putz, M. K. & Taylor, E. L. Wound response in fossil trees assemblages from Antarctica and its potential as a palaeoenvironmental indicator. IAWA J. 17, 77–88 (1996).

    Google Scholar 

  • 107.

    McKellar, R. C. et al. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers. Proc. R. Soc. B 278, 3219–3224 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).

    Google Scholar 

  • 109.

    Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl Acad. Sci. USA 109, 14796–14801 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).

    PubMed 

    Google Scholar 

  • 111.

    Donoghue, P. Evolution: the flowering of land plant evolution. Curr. Biol. 29, 753–756 (2019).

    Google Scholar 

  • 112.

    Thulin, M. et al. Family relationships of the enigmatic rosid genera Barbeya and Dirachma from the Horn of Africa region. Plant Syst. Evol. 213, 103–119 (1998).

    Google Scholar 

  • 113.

    Wilf, P., Carvalho, M. R., Gandolfo, M. A. & Cúneo, N. R. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355, 71–75 (2017).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition