in

Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber

  • 1.

    Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 2483–2490 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Herrera-Flores, J. A., Stubbs, T. L. & Benton, M. J. Ecomorphological diversification of squamates in the Cretaceous. R. Soc. Open Sci. 8, 201961 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B 365, 3667–3679 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Roelants, K. et al. Global patterns of diversifcation in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, 900–903 (2012).

    Google Scholar 

  • 7.

    Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Buggs, R. J. The deepening of Darwin’s abominable mystery. Nat. Ecol. Evol. 1, 0169 (2017).

    Google Scholar 

  • 9.

    Friis, E. M., Crane, P. R., Pedersen, K. R., Stampanoni, M. & Marone, F. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528, 551–554 (2015).

    PubMed 

    Google Scholar 

  • 10.

    Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

  • 11.

    Friis, E. M., Pedersen, K. R. & Crane, P. R. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 251–293 (2006).

    Google Scholar 

  • 12.

    Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B 286, 20190099 (2019).

    PubMed Central 

    Google Scholar 

  • 13.

    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).

    PubMed 

    Google Scholar 

  • 14.

    Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 569–583 (2012).

    Google Scholar 

  • 15.

    Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).

    PubMed 

    Google Scholar 

  • 17.

    Cruickshank, R. D. & Ko, K. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. J. Asian Earth Sci. 21, 441–455 (2003).

    Google Scholar 

  • 18.

    Shi, G. H. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    Google Scholar 

  • 19.

    Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 166, 11345–11350 (2019).

    Google Scholar 

  • 20.

    Xing, L. D. & Qiu, L. Zircon U–Pb age constraints on the Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).

    Google Scholar 

  • 21.

    Xia, F. Y., Yang, G., Zhang, Q. & Shi, G. L. Amber Lives Through Time and Space (Beijing Science Press, 2015).

  • 22.

    Poinar, G. O. & Brown, A. E. A green algae (Chaetophorales: Chaetophoraceae) in Burmese amber. Hist. Biol. 33, 323–327 (2019).

    Google Scholar 

  • 23.

    Liu, Z. J., Huang, D., Cai, C. Y. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Poinar, G. O. & Chambers, K. L. Tropidogyne pentaptera sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity 10, 135–140 (2017).

    Google Scholar 

  • 25.

    Poinar, G. O. & Chambers, K. L. Palaeoanthella huangii gen. and sp. nov., an Early Cretaceous flower (Angiospermae) in Burmese amber. SIDA 21, 2087–2092 (2005).

    Google Scholar 

  • 26.

    Goldblatt, P. An analysis of the flora of Southern Africa: its characteristics, relationships, and orgins. Ann. Mo. Bot. Gard. 65, 369–436 (1978).

    Google Scholar 

  • 27.

    Verboom, G. A. et al. in Fynbos: Ecology, Evolution and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 93–118 (Oxford Univ. Press, 2014).

  • 28.

    Hauenschild, F., Favre, A., Michalak, I. & Muellner-Riehl, A. N. The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). J. Biogeogr. 45, 2669–2677 (2018).

    Google Scholar 

  • 29.

    Onstein, R. E. & Linder, H. P. Beyond climate: convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate. J. Ecol. 104, 665–677 (2016).

    Google Scholar 

  • 30.

    Brown, S., Scott, A. C., Glasspool, I. J. & Collinson, M. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).

    Google Scholar 

  • 31.

    Richardson, J. E. et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412, 181–183 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Pillans, N. S. The genus Phylica. J. S. Afr. Bot. 8, 1–164 (1942).

    Google Scholar 

  • 33.

    Rebelo, T. et al. in The vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 52–219 (South African National Biodiversity Institute, 2006).

  • 34.

    Gimingham, C. H. & Cowling, R. The ecology of fynbos: nutrients, fire and diversity. J. Ecol. 81, 195–196 (1993).

    Google Scholar 

  • 35.

    Richardson, J. E., Fay, M. F., Cronk, Q. C. B. & Cronk, M. W. Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 57, 816–827 (2003).

    PubMed 

    Google Scholar 

  • 36.

    Richardson, J. E. Molecular Systematics of the Genus Phylica L. With an Emphasis on the Island Species (Edinburgh Univ. Press, 1999).

  • 37.

    Schirarend, C. & Köhler, E. World Pollen and Spore Flora: Rhamnaceae Juss (Scandinavian Univ. Press, 1993).

  • 38.

    Medan, D. & Schirarend, C. in Flowering plants · Dicotyledons (ed. Kubitzki, K.) 320–338 (Springer, 2004).

  • 39.

    Gotelli, M. M., Galati, B. G. & Medan, D. Morphological and ultrastructural studies of floral nectaries in Rhamnaceae. J. Torrey Bot. Soc. 144, 63–73 (2017).

    Google Scholar 

  • 40.

    Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans–a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).

    CAS 

    Google Scholar 

  • 41.

    Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    CAS 

    Google Scholar 

  • 42.

    Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull. 107, 1164–1191 (1995).

    Google Scholar 

  • 43.

    Belcher, C. M., Yearsley, J. M., Hadden, R. M., Mcelwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).

    CAS 

    Google Scholar 

  • 45.

    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).

    CAS 

    Google Scholar 

  • 46.

    Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1241 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Hudspith, V. A. & Belcher, C. M. Fire biases the production of charred flowers: implications for the Cretaceous fossil record. Geology 45, 727–730 (2017).

    Google Scholar 

  • 48.

    Scott, A. C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 11–39 (2010).

    Google Scholar 

  • 49.

    Scott, A. C. The use of charcoal to interpret Cretaceous wildfires and volcanic activity. Glob. Geol. 22, 217–241 (2019).

    Google Scholar 

  • 50.

    Scott, A. C., Cripps, J. A., Nichols, G. J. & Collinson, M. E. The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 1–31 (2000).

    Google Scholar 

  • 51.

    Whtilock, C., Higuera, P. E., McWethy, D. B. & Briles, C. E. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecol. J. 3, 6–23 (2010).

    Google Scholar 

  • 52.

    Bond, W. J. & Keeley, J. E. Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    PubMed 

    Google Scholar 

  • 53.

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous–Paleogene boundary. Nat. Commun. 2, 193 (2011).

    PubMed 

    Google Scholar 

  • 55.

    Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bioscience 59, 593–601 (2009).

    Google Scholar 

  • 56.

    Scott, A. C. Burning Planet. The Story of Fire Through Time (Oxford Univ. Press, 2018).

  • 57.

    Scott, A. C. Fire: A Very Short Introduction (Oxford Univ. Press, 2020).

  • 58.

    Scott, A. C., Bowman, D. J. M. S., Bond, W. J., Pyne, S. J. & Alexander M. Fire on Earth: An Introduction (J. Wiley & Sons Press, 2014).

  • 59.

    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Lenton,T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 289–308 (J. Wiley & Sons Press, 2013).

  • 61.

    Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R. & Kobylinska, J. A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of the central Georgia, USA. Ann. Mo. Bot. Gard. 86, 407–471 (1999).

    Google Scholar 

  • 62.

    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).

    PubMed 

    Google Scholar 

  • 63.

    Cornwell, W. K. et al. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytol. 206, 672–681 (2015).

    PubMed 

    Google Scholar 

  • 64.

    Lamont, B. B. & He, T. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evol. Biol. 12, 223 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    He, T., Lamont, B. B. & Manning, J. A. Cretaceous origin for fire adaptations in the Cape flora. Sci. Rep. 6, 34880 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. New Phytol. 191, 184–196 (2011).

    PubMed 

    Google Scholar 

  • 67.

    Midgley, J. & Bond, W. Pushing back in time, the role of fire in plant evolution. New Phytol. 191, 5–7 (2011).

    PubMed 

    Google Scholar 

  • 68.

    Scott, A. C. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).

    Google Scholar 

  • 69.

    Midgley, J. J., Kruger, L. M. & Skelton, R. How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae “fire-resisters”. S. Afr. J. Bot. 77, 381–386 (2011).

    Google Scholar 

  • 70.

    Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their non-laminarity. New Phytol. 207, 942–947 (2015).

    PubMed 

    Google Scholar 

  • 71.

    Lamont, B. B., He, T. & Yan, Z. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 94, 903–928 (2019).

    PubMed 

    Google Scholar 

  • 72.

    Schwilk, D. W. & Kerr, B. Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99, 431–442 (2002).

    Google Scholar 

  • 73.

    Kilian, D. & Cowling, R. M. Comparative seed biology and co-existence of two fynbos shrub species. J. Veg. Sci. 3, 637–646 (1992).

    Google Scholar 

  • 74.

    Hall, S. A., Newton, R. J., Holmes, P. M., Gaertner, M. & Esler, K. J. Heat and smoke pre‐treatment of seeds to improve restoration of an endangered Mediterranean climate vegetation type. Austral Ecol. 42, 354–366 (2017).

    Google Scholar 

  • 75.

    Ruprecht, E., Fenesi, A., Fodor, E. I., Kuhn, T. & Tklyi, J. Shape determines fire tolerance of seeds in temperate grasslands that are not prone to fire. Perspect. Plant Ecol. 17, 397–404 (2015).

    Google Scholar 

  • 76.

    Mohr, B. A. R. & Friis, E. M. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. 161, 155–167 (2000).

    Google Scholar 

  • 77.

    Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Linder, H. P. Evolution of diversity: the Cape flora. Trends Plant Sci. 10, 536–541 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Linder, H. P. The radiation of the Cape flora, southern Africa. Biol. Rev. 78, 597–638 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Poinar, G. O. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309 (2019).

    Google Scholar 

  • 81.

    Oliveira, I. D. S. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Poinar, G. O., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).

    Google Scholar 

  • 83.

    Cai, C. Y. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 2175 (2019).

    Google Scholar 

  • 84.

    Zhang, W., Li, H., Shih, C., Zhang, A. & Ren, D. Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics 34, 384–406 (2018).

    PubMed 

    Google Scholar 

  • 85.

    Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 5–6 (2019).

    Google Scholar 

  • 86.

    Metcalfe, I. in Biogeography and Geological Evolution of SE Asia (eds Hall, R. & Holloway, J. D.) 25–41 (Backhuys Publishers Press,1998).

  • 87.

    Li, J., Wu, Y., Peng, J. & Batten, D. J. Palynofloral evolution on the northern margin of the Indian Plate, southern Xizang, China during the Cretaceous period and its phytogeographic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 107–122 (2019).

    Google Scholar 

  • 88.

    Smith, A. G., Smith, D. G. & Funnell B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, 2004).

  • 89.

    Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Coetzee, J. A. & Muller, J. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann. Mo. Bot. Gard. 71, 1088–1099 (1984).

    Google Scholar 

  • 91.

    De Villiers, S. E. & Cadman, A. The palynology of Tertiary sediments from a palaeochannel in Namaqualand, South Africa. Palaeontol. Afr. 34, 69–99 (1997).

    Google Scholar 

  • 92.

    De Villiers, S. E. & Cadman, A. An analysis of the palynomorphs obtained from Tertiary sediments at Koingnaas, Namaqualand, South Africa. J. Afr. Earth Sci. 33, 17–47 (2001).

    Google Scholar 

  • 93.

    Sandersen, A., Scott, L., McLachlan, I. R. & Hancox, P. J. Cretaceous biozonation based on terrestrial palynomorphs from two wells in the offshore Orange Basin of South Africa. Palaeontol. Afr. 46, 21–41 (2011).

    Google Scholar 

  • 94.

    Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (1988).

    Google Scholar 

  • 95.

    Scholtz, A. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Ann. S. Afr. Mus. 95, 1–109 (1985).

    Google Scholar 

  • 96.

    Sciscio, L. et al. Fluctuations in Miocene climate and sea levels along the south-western South African coast: inferences from biogeochemistry, palynology and sedimentology. Palaeontol. Afr. 48, 2–18 (2013).

    Google Scholar 

  • 97.

    Roberts, D. L. et al. Miocene fluvial systems and palynofloras at the southwestern tip of Africa: implications for regional and global fluctuations in climate and ecosystems. Earth Sci. Rev. 124, 184–201 (2013).

    Google Scholar 

  • 98.

    Roberts, D. L. et al. Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa. Glob. Planet. Change 150, 1–23 (2017).

    Google Scholar 

  • 99.

    Grimaldi, D., Engel, M. S. & Nascimbene, P. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 3361, 1–72 (2002).

    Google Scholar 

  • 100.

    Mao, Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).

    Google Scholar 

  • 101.

    Smith, R. D. & Ross, A. J. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth Env. Sci. Trans. R. Soc. Edinb. 107, 239–247 (2018).

    Google Scholar 

  • 102.

    Schmidt, A. R. & Dilcher, D. L. Aquatic organisms as amber inclusions and examples from a modern swamp forest. Proc. Natl Acad. Sci. USA 104, 16581–16585 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Cole, L. E., Bhagwat, S. A. & Willis, K. J. Fire in the swamp forest: palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Front. For. Glob. Change 2, 48 (2019).

    Google Scholar 

  • 104.

    Labandeira, C. C. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers (eds Laflamme, M. et al.) 163–216 (Cambridge Univ. Press, 2014).

  • 105.

    Seyfullah, L. J. et al. Production and preservation of resins–past and present. Biol. Rev. 93, 1684–1714 (2018).

    PubMed 

    Google Scholar 

  • 106.

    Putz, M. K. & Taylor, E. L. Wound response in fossil trees assemblages from Antarctica and its potential as a palaeoenvironmental indicator. IAWA J. 17, 77–88 (1996).

    Google Scholar 

  • 107.

    McKellar, R. C. et al. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers. Proc. R. Soc. B 278, 3219–3224 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).

    Google Scholar 

  • 109.

    Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl Acad. Sci. USA 109, 14796–14801 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).

    PubMed 

    Google Scholar 

  • 111.

    Donoghue, P. Evolution: the flowering of land plant evolution. Curr. Biol. 29, 753–756 (2019).

    Google Scholar 

  • 112.

    Thulin, M. et al. Family relationships of the enigmatic rosid genera Barbeya and Dirachma from the Horn of Africa region. Plant Syst. Evol. 213, 103–119 (1998).

    Google Scholar 

  • 113.

    Wilf, P., Carvalho, M. R., Gandolfo, M. A. & Cúneo, N. R. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355, 71–75 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Effects of reduced salinity caused by reclamation on population and physiological characteristics of the sesarmid crab Chiromantes dehaani

    Old and ancient trees are life history lottery winners and vital evolutionary resources for long-term adaptive capacity