in

Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

Data collection

The present dataset was collected within the framework of the Atlantic Lobster Moult and Quality (ALMQ) project originally managed and implemented by the Atlantic Veterinary College Lobster Science Centre at the University of Prince Edward Island in collaboration with the Fishermen and Scientists Research Society. The Atlantic Lobster Moult and Quality project was initially funded through the Atlantic Innovation Fund program from the Atlantic Canada Opportunities Agency (ACOA) and transferred to the Fishermen and Scientists Research Society (FSRS) in 2012.

Sampling took place every 2–3 weeks in eight lobster fishing areas (LFA) in Atlantic Canada from 2004 to 2014 (see Fig. 1, Table 1). The sampling followed the FSRS Lobster Moult and Quality sampling protocol and was conducted by technicians from the Atlantic Veterinary College and the Fishermen and Scientists Research Society in fixed locations from traps set the day before2. Locations based on targeted sampling (LFA 33 and 34) were chosen according to the fishing efforts in the respective areas and selected by a lobster science committee consisting of members from industry, academia, research and federal and provincial representatives. Other locations (LFA 24, 25, 26A, 35) were chosen based on proximity to the Atlantic Veterinary College and other projects with commercial fishers which allowed sampling.

Table 1 Overview of sampling locations, surface areas (km2) and number of lobsters (N) sampled for the Atlantic Lobster Moult and Quality Project by AVC Lobster Science Centre from 2004–2015 in Atlantic Canada. (PEI = Prince Edward Island, NS = Nova Scotia).
Full size table
Fig. 1

(a) Map of the lobster fishing areas (LFAs) in the Maritime Provinces in eastern Canada with the sampling locations (red) recorded by the AVC Lobster Science Centre for the Atlantic Lobster Moult and Quality project. (b) Enlarged map of LFA 33. (c) Enlarged map of LFAs on Prince Edward Island. The maps were created using QGIS (v. 3.18; https://qgis.org). Contours depict water depths in meters.

Full size image

For each sampling event, 40 commercial lobster traps with escape vents for lobsters below the minimum legal size were used. Legal sizes depend on size-at-maturity (size at which 50% of the population reach maturity) which differs between LFAs due to regional differences in water temperature that influence lobster growth. There were some differences in sampling procedure between lobster fishing season and off-season. During lobster fishing season sampling took place within 48 h post landing and only legal-sized lobsters were assessed. During off season, lobsters were sampled directly on board chartered boats and were returned to sea immediately after sampling. During non-fishing season sampling, lobsters below minimum legal size were also sampled but no egg-bearing females were targeted to minimize negative handling effects. Targeted sample size was 200 lobsters per sampling event before 2009 and 125 lobsters after 2009 due to budget constraints.

On average, 3–4 lobsters of each sex were sampled in every 2 mm lobster size grouping. Lobster size was recorded as the carapace length in mm and determined using calipers rounding down to the nearest mm. The size distribution of sampled lobsters is presented in Fig. 2. Lobsters were assessed for general health (lesions, shell damage, liveliness/vigour) and shell hardness. Shell hardness was recorded as soft, medium or hard. A carapace of a soft-shelled lobster would be compressible at the ventral and dorsal (anterior and posterior) carapace, a medium-shelled lobster would only be compressible at the ventral carapace and a hard-shelled lobster would not be compressible at any carapace location.

Fig. 2

Lobster size (as carapace length in mm) distribution for all lobsters sampled during the sampling period (15 missing values).

Full size image

To estimate hemolymph protein levels, the ventral abdomen between the first pair of walking legs was sprayed with 70% ethanol and 3 ml of hemolymph were extracted with a 22 gauge needle and a 3 ml syringe. A few drops of hemolymph were placed on a handheld refractometer and the refractive index (“°Brix” value) was recorded and used as a proxy for total hemolymph levels. The distribution of hemolymph protein level is shown in Fig. 3. The moult stages were determined by pleopod stages under a stereomicroscope and recorded in pleopod stages (see Table 2). The stage determinations are shown in Table 2 and Fig. 46.

Fig. 3

Distribution of hemolymph protein level (measured in °Brix) for all lobsters sampled in the dataset (892 missing values).

Full size image
Table 2 Description of premoult stages and pleopod stages in adult American lobster based on Aiken6. C: Intermoult, D: Premoult.
Full size table
Fig. 4

Pleopod stages of lobsters at different times in their moult cycle. Illustrations by Lavallée et al.2.

Full size image

In total, 141,659 lobsters were sampled from 2004–2015 over 1,195 sampling events. Data were recorded manually on data sheets and re-checked before being entered into an Excel data sheet (Excel, Microsoft).


Source: Ecology - nature.com

Charting the landscape at MIT

Widespread increasing vegetation sensitivity to soil moisture