Jones, C. G. et al. A framework for understanding physical ecosystem engineering by organisms. Oikos 119, 1862–1869 (2010).
Google Scholar
Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).
Google Scholar
Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).
Google Scholar
Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280 (1998).
Google Scholar
Montefalcone, M., Morri, C., Peirano, A., Albertelli, G. & Bianchi, C. N. Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 75, 63–71 (2007).
Google Scholar
Pergent, G. et al. Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers. Mediterranean Mar. Sci. 15, 462–473 (2014).
Google Scholar
Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147–157 (2010).
Google Scholar
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
Google Scholar
Meybeck, M. The global change of continental aquatic systems: dominant impacts of human activities. Water Sci. Technol. 49, 73–83 (2004).
Google Scholar
Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
Google Scholar
Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 1–16 (2014).
Google Scholar
Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Chang. 7, 81–85 (2017).
Google Scholar
Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).
Google Scholar
Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–12 (2015).
Google Scholar
Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).
Google Scholar
Cocito, S. Bioconstruction and biodiversity: their mutual influence. Sci. Mar. 68, 137–144 (2004).
Google Scholar
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
Google Scholar
Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
Google Scholar
Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).
Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. U. Kingd. 96, 341–350 (2016).
Google Scholar
Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000). https://doi.org/10.1017/CBO9780511525551.
Nellemann, C. et al. Blue Carbon – The Role of Healthy Oceans in Binding Carbon. A Rapid Response Assessment (GRID-Arendal, 2009).
Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).
Google Scholar
Romero, J., Pérez, M., Mateo, M. A. & Sala, E. The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat. Bot. 47, 13–19 (1994).
Google Scholar
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA. 106, 12377–12381 (2009).
Google Scholar
Tyler-Walters, H. Loose-lying mats of Phyllophora crispa on infralittoral muddy sediment. Mar. Inf. Netw. Biol. Sensit. Key Inf. Rev. 1–16 https://doi.org/10.17031/marlinhab.187.1 (2016).
Bonifazi, A. et al. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: benthic assemblages along a depth gradient in the Central Mediterranean Sea. Estuar. Coast. Shelf Sci. 185, 77–93 (2017).
Google Scholar
Navone, A., Bianchi, C. N., Orru, P. & Ulzega, A. Saggio di cartografia geomorfologica e bionomica nel parco marino di Tavolara-Capo Coda Cavallo. Oebalia 17, 469–478 (1992).
Guiry, M. Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota. in European Register of Marine Species: A Check-list of the Marine Species in Europe and a Bibliography of Guides to their Identification. Collection Patrimoines Naturels (eds. Costello, M. J., Emblow, C. & White, R.) 20e38 (Collection Patrimoines Naturels, 2001).
Zaitsev, Y. An Introduction to the Black Sea Ecology (Smil Edition and Publishing Agency ltd, 2008).
Berov, D., Todorova, V., Dimitrov, L., Rinde, E. & Karamfilov, V. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area. Estuar. Coast. Shelf Sci. 200, 234–247 (2018).
Google Scholar
Bunker, F., Brodie, J. A., Maggs, C. A. & Bunker, A. R. Seaweeds of Britain and Ireland. (Wild Nature Press, 2017).
Schmidt, N., El-Khaled, Y. C., Rossbach, F. I. & Wild, C. Fleshy red algae mats influence their environment in the Mediterranean Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721626 (2021).
Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 13, 265 (2021).
Google Scholar
Virnstein, R. W., & Carbonara, P. A. Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquat. Bot. 23, 67–82 (1985).
Google Scholar
Norkko, J., Bonsdorff, E. & Norkko, A. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific response to a transient resource. J. Exp. Mar. Bio. Ecol. 248, 79–104 (2000).
Google Scholar
Salovius, S., Nyqvist, M. & Bonsdorff, E. Life in the fast lane: macrobenthos use temporary drifting algal habitats. J. Sea Res. 53, 169–180 (2005).
Google Scholar
Arroyo, N. L., Aarnio, K., Mäensivu, M. & Bonsdorff, E. Drifting filamentous algal mats disturb sediment fauna: Impacts on macro-meiofaunal interactions. J. Exp. Mar. Bio. Ecol. 420–421, 77–90 (2012).
Google Scholar
McNeil, M. et al. Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01400-8 (2021).
Nelson, T. A. et al. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89, 1287–1298 (2008).
Google Scholar
Coffin, M. R. S. et al. Are floating algal mats a refuge from hypoxia for estuarine invertebrates? PeerJ 5, e3080 (2017).
Barnes, R. S. K. Context dependency in the effect of Ulva-induced loss of seagrass cover on estuarine macrobenthic abundance and biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 163–174 (2019).
Google Scholar
Hull, S. C. Macroalgal mats and species abundance: a field experiment. Estuar. Coast. Shelf Sci. 25, 519–532 (1987).
Google Scholar
Bohórquez, J. et al. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz. Mar. Pollut. Bull. 70, 10–17 (2013).
Google Scholar
Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B Biol. Sci. 285, 20172571 (2018).
Teagle, H. & Smale, D. A. Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib. 24, 1367–1380 (2018).
Google Scholar
Dean, R. L. & Connell, J. H. Marine invertebrates in an algal succession. I. Variations in abundance and diversity with succession. J. Exp. Mar. Bio. Ecol. 109, 195–215 (1987).
Google Scholar
Buia, M. C., Gambi, M. C. & Zupo, V. Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol. Mar. Mediterr. 7, 167–190 (2000).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Google Scholar
Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).
Google Scholar
Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).
Google Scholar
El-Khaled, Y. C. et al. Fleshy Red Algae Mats Act as Temporary Reservoir for Sessile Invertebrate Biodiversity – Raw Data for Biodiversity Analysis, Species List and Detailed Output Data from iNext Procedure. https://doi.org/10.5281/zenodo.5653358 (2021).
Viaroli, P. et al. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, S105–S117 (2008).
Google Scholar
Viaroli, P., Azzoni, R., Bartoli, M., Giordani, G. & Tajé, L. Evolution of the trophic conditions and dystrophic outbreaks in the Sacca di Goro Lagoon (Northern Adriatic Sea). in Mediterranean Ecosystems (eds. Farranda, F., Guglielmo, L. & Spezie, G.) 467–475 (Springer, 2001). https://doi.org/10.1007/978-88-470-2105-1_59.
Axelsson, L. Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97, 287–294 (1988).
Google Scholar
Morel, F. & Hering, J. G. Acids and bases. Alkalinity and pH in natural waters. in Principles and Applications of Aquatic Chemistry (eds. Morel, F. & Hering, J. G.) 127–178 (Wiley, New York, 1983).
Dalla Via, J. et al. Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 163, 267–278 (1998).
Google Scholar
Enríquez, S. & Pantoja-Reyes, N. I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145, 235–243 (2005).
Google Scholar
Ryland, J. S. Bryozoans (Hutchinson Unviersity Library, 1970).
McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (University of Chicago Press, 1991).
Mullineaux, L. S. & Garland, E. D. Larval recruitment in response to manipulated field flows. Mar. Biol. 116, 667–683 (1993).
Google Scholar
Qian, P. Y., Rittschof, D. & Sreedhar, B. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar. Ecol. Prog. Ser. 207, 109–121 (2000).
Google Scholar
Qian, P. Y., Rittschof, D., Sreedhar, B. & Chia, F. S. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Mar. Ecol. Prog. Ser. 191, 141–151 (1999).
Google Scholar
Judge, M. L. & Craig, S. F. Positive flow dependence in the initial colonization of a fouling community: results from in situ water current manipulations. J. Exp. Mar. Bio. Ecol. 210, 209–222 (1997).
Google Scholar
Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 40, 1–13 (2021).
Cummings, V., Vopel, K. & Thrush, S. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behaviour of post-settlement bivalves. Mar. Ecol. Prog. Ser. 383, 173–185 (2009).
Google Scholar
Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).
Google Scholar
Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).
Google Scholar
Gacia, E., Granata, T. C. & Duarte, C. M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 65, 255–268 (1999).
Google Scholar
Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser. 356, 163–173 (2008).
Google Scholar
Prathep, A., Marrs, R. H. & Norton, T. A. Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Mar. Biol. 142, 381–390 (2003).
Google Scholar
Piazzi, L. & Ceccherelli, G. Alpha and beta diversity in Mediterranean macroalgal assemblages: relevancy and type of effect of anthropogenic stressors vs natural variability. Mar. Biol. 167, 1–10 (2020).
Google Scholar
Lavender, J. T., Dafforn, K. A., Bishop, M. J. & Johnston, E. L. Small-scale habitat complexity of artificial turf influences the development of associated invertebrate assemblages. J. Exp. Mar. Bio. Ecol. 492, 105–112 (2017).
Google Scholar
Thomsen, M. S., de Bettignies, T., Wernberg, T., Holmer, M. & Debeuf, B. Harmful algae are not harmful to everyone. Harmful Algae 16, 74–80 (2012).
Google Scholar
Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44, 103–110 (1997).
Google Scholar
Infantes, E., Terrados, J., Orfila, A., Cañellas, B. & Álvarez-Ellacuria, A. Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot. Mar. 52, 419–427 (2009).
Google Scholar
Procaccini, G. et al. The seagrasses of the Western Mediterranean. in World Atlas of Seagrasses (eds. Green, E. P. & Short, F. T.) 48–58 (University of California Press, 2003).
Geist, J. & Hawkins, S. J. Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 942–962 (2016).
Google Scholar
Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot. 84, 26–36 (2006).
Google Scholar
Mason, R., Hock, K. & Mumby, P. J. Identification of important source reefs for Great Barrier Reef Recovery following the 2016-17 Thermal Stress Events. Rep. to Natl. Environ. Sci. Progr. p. 11 (2018).
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
Google Scholar
McCall, B. D. & Pennings, S. C. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill. PLoS One 7, 1–7 (2012).
Google Scholar
Bianchi, C. N. et al. Hard bottoms. Mediterr. Mar. Benthos a Man. Methods its Sampl. study 6, 185–215 (2004).
Orth, R. J., Heck, K. L. & van Montfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350 (1984).
Google Scholar
Bianchi, C. N., Bedulli, D., Morri, C., Occhipinti Ambrogi, A. L’herbier de Posidonies: Ecosystème ou carrefour écoéthologique? In International Workshop Posidonia Oceanica Beds. (eds. Boudouresque, C. F., Meinesz, A., Fresi, E. & Gravez, V.) (GIS Posidonie, Marseille, 1989).
Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: An overview. Mar. Ecol. 37, 3–41 (2016).
Google Scholar
R Core Team. R: a language and environment for statistical computing (2017).
RStudio Team. RStudio: Integrated Development for R (2020).
Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.22 (2021).
Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
Google Scholar
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).
Daraghmeh, N. & El-Khaled, Y. C. iNEXT4steps workflow for biodiversity assessment and comparison. protocols.io 1–5 (2021) https://doi.org/10.17504/protocols.io.bu6fnzbn.
Chao, A. & Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 6, 873–882 (2015).
Google Scholar
Chao, A., & Ricotta, C. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology 100, 1–15 (2019).
Google Scholar
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).
Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to Software and Statistical Methods (2008).
Rasband, W. ImageJ (1997).
Buia, M. C. M. C., Gambi, M. C. & Dappiano, M. Seagrass systems. Biol. Mar. Mediterr. 11, 133–183 (2004).
Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).
Google Scholar
Klain, D. A. An intuitive derivation of Heron’s formula. Am. Math. Mon. 111, 709–712 (2004).
Google Scholar
Duggins, D. O., Eckman, J. E. & Sewell, A. T. Ecology of understory kelp environments. II. Effects of kelps on recruitment of benthic invertebrates. J. Exp. Mar. Bio. Ecol. 143, 27–45 (1990).
Google Scholar
Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Bio. Ecol. 129, 173–187 (1989).
Google Scholar
Mabrouk, L., Ben Brahim, M., Hamza, A. & Bradai, M. N. Diversity and temporal fluctuations of epiphytes and sessile invertebrates on the rhizomes Posidonia oceanica in a seagrass meadow off Tunisia. Mar. Ecol. 35, 212–220 (2014).
Google Scholar
Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. in Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 123–195 (Taylor & Francis, 2006).
Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 82, 477–484 (2009).
Google Scholar
Cleary, D. F. R. et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Mar. Pollut. Bull. 110, 701–717 (2016).
Google Scholar
Milne, R. & Griffiths, C. Invertebrate biodiversity associated with algal turfs on a coral-dominated reef. Mar. Biodivers. 44, 181–188 (2014).
Google Scholar
Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep–water Lophelia reefs in Norway. Proc. 10th Int. Coral Reef. Symp. 1868, 1849–1868 (2006).
Henry, L. A., Davies, A. J. & Roberts, J. M. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs 29, 427–436 (2010).
Google Scholar
Farnsworth, E. J. & Ellison, A. M. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities. Ecol. Monogr. 66, 45–66 (1996).
Google Scholar
Graham, M. H. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7, 341–357 (2004).
Google Scholar
Gutt, J., Sirenko, B. I., Arntz, W. E., Smirnov, I. S. & Broyer, C. D. E. Biodiversity of the Weddell Sea: macrozoobenthic species (demersal fish included) sampled during the expedition ANT Xllll3 (EASIZ I) with RV ‘Polarstern’. Ber. Polarforsch. Meeresforsch. 372, 118 (2000).
Source: Ecology - nature.com