in

Fleshy red algae mats act as temporary reservoirs for sessile invertebrate biodiversity

  • Jones, C. G. et al. A framework for understanding physical ecosystem engineering by organisms. Oikos 119, 1862–1869 (2010).

    Article 

    Google Scholar 

  • Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).

    Article 

    Google Scholar 

  • Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article 

    Google Scholar 

  • Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Montefalcone, M., Morri, C., Peirano, A., Albertelli, G. & Bianchi, C. N. Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 75, 63–71 (2007).

    Article 

    Google Scholar 

  • Pergent, G. et al. Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers. Mediterranean Mar. Sci. 15, 462–473 (2014).

    Article 

    Google Scholar 

  • Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147–157 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).

    Article 

    Google Scholar 

  • Meybeck, M. The global change of continental aquatic systems: dominant impacts of human activities. Water Sci. Technol. 49, 73–83 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 1–16 (2014).

    Article 

    Google Scholar 

  • Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Chang. 7, 81–85 (2017).

    CAS 
    Article 

    Google Scholar 

  • Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).

    Article 

    Google Scholar 

  • Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–12 (2015).

    Article 

    Google Scholar 

  • Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cocito, S. Bioconstruction and biodiversity: their mutual influence. Sci. Mar. 68, 137–144 (2004).

    Article 

    Google Scholar 

  • Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar 

  • Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).

  • Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. U. Kingd. 96, 341–350 (2016).

    Article 

    Google Scholar 

  • Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000). https://doi.org/10.1017/CBO9780511525551.

  • Nellemann, C. et al. Blue Carbon – The Role of Healthy Oceans in Binding Carbon. A Rapid Response Assessment (GRID-Arendal, 2009).

  • Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).

    Article 

    Google Scholar 

  • Romero, J., Pérez, M., Mateo, M. A. & Sala, E. The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat. Bot. 47, 13–19 (1994).

    Article 

    Google Scholar 

  • Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA. 106, 12377–12381 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tyler-Walters, H. Loose-lying mats of Phyllophora crispa on infralittoral muddy sediment. Mar. Inf. Netw. Biol. Sensit. Key Inf. Rev. 1–16 https://doi.org/10.17031/marlinhab.187.1 (2016).

  • Bonifazi, A. et al. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: benthic assemblages along a depth gradient in the Central Mediterranean Sea. Estuar. Coast. Shelf Sci. 185, 77–93 (2017).

    Article 

    Google Scholar 

  • Navone, A., Bianchi, C. N., Orru, P. & Ulzega, A. Saggio di cartografia geomorfologica e bionomica nel parco marino di Tavolara-Capo Coda Cavallo. Oebalia 17, 469–478 (1992).

  • Guiry, M. Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota. in European Register of Marine Species: A Check-list of the Marine Species in Europe and a Bibliography of Guides to their Identification. Collection Patrimoines Naturels (eds. Costello, M. J., Emblow, C. & White, R.) 20e38 (Collection Patrimoines Naturels, 2001).

  • Zaitsev, Y. An Introduction to the Black Sea Ecology (Smil Edition and Publishing Agency ltd, 2008).

  • Berov, D., Todorova, V., Dimitrov, L., Rinde, E. & Karamfilov, V. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area. Estuar. Coast. Shelf Sci. 200, 234–247 (2018).

    Article 

    Google Scholar 

  • Bunker, F., Brodie, J. A., Maggs, C. A. & Bunker, A. R. Seaweeds of Britain and Ireland. (Wild Nature Press, 2017).

  • Schmidt, N., El-Khaled, Y. C., Rossbach, F. I. & Wild, C. Fleshy red algae mats influence their environment in the Mediterranean Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721626 (2021).

  • Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 13, 265 (2021).

    Article 

    Google Scholar 

  • Virnstein, R. W., & Carbonara, P. A. Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquat. Bot. 23, 67–82 (1985).

    Article 

    Google Scholar 

  • Norkko, J., Bonsdorff, E. & Norkko, A. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific response to a transient resource. J. Exp. Mar. Bio. Ecol. 248, 79–104 (2000).

    CAS 
    Article 

    Google Scholar 

  • Salovius, S., Nyqvist, M. & Bonsdorff, E. Life in the fast lane: macrobenthos use temporary drifting algal habitats. J. Sea Res. 53, 169–180 (2005).

    Article 

    Google Scholar 

  • Arroyo, N. L., Aarnio, K., Mäensivu, M. & Bonsdorff, E. Drifting filamentous algal mats disturb sediment fauna: Impacts on macro-meiofaunal interactions. J. Exp. Mar. Bio. Ecol. 420–421, 77–90 (2012).

    Article 

    Google Scholar 

  • McNeil, M. et al. Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01400-8 (2021).

  • Nelson, T. A. et al. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89, 1287–1298 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Coffin, M. R. S. et al. Are floating algal mats a refuge from hypoxia for estuarine invertebrates? PeerJ 5, e3080 (2017).

  • Barnes, R. S. K. Context dependency in the effect of Ulva-induced loss of seagrass cover on estuarine macrobenthic abundance and biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 163–174 (2019).

    Article 

    Google Scholar 

  • Hull, S. C. Macroalgal mats and species abundance: a field experiment. Estuar. Coast. Shelf Sci. 25, 519–532 (1987).

    Article 

    Google Scholar 

  • Bohórquez, J. et al. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz. Mar. Pollut. Bull. 70, 10–17 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B Biol. Sci. 285, 20172571 (2018).

  • Teagle, H. & Smale, D. A. Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib. 24, 1367–1380 (2018).

    Article 

    Google Scholar 

  • Dean, R. L. & Connell, J. H. Marine invertebrates in an algal succession. I. Variations in abundance and diversity with succession. J. Exp. Mar. Bio. Ecol. 109, 195–215 (1987).

    Article 

    Google Scholar 

  • Buia, M. C., Gambi, M. C. & Zupo, V. Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol. Mar. Mediterr. 7, 167–190 (2000).

    Google Scholar 

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar 

  • Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).

    Article 

    Google Scholar 

  • El-Khaled, Y. C. et al. Fleshy Red Algae Mats Act as Temporary Reservoir for Sessile Invertebrate Biodiversity – Raw Data for Biodiversity Analysis, Species List and Detailed Output Data from iNext Procedure. https://doi.org/10.5281/zenodo.5653358 (2021).

  • Viaroli, P. et al. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, S105–S117 (2008).

    Article 

    Google Scholar 

  • Viaroli, P., Azzoni, R., Bartoli, M., Giordani, G. & Tajé, L. Evolution of the trophic conditions and dystrophic outbreaks in the Sacca di Goro Lagoon (Northern Adriatic Sea). in Mediterranean Ecosystems (eds. Farranda, F., Guglielmo, L. & Spezie, G.) 467–475 (Springer, 2001). https://doi.org/10.1007/978-88-470-2105-1_59.

  • Axelsson, L. Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97, 287–294 (1988).

    Article 

    Google Scholar 

  • Morel, F. & Hering, J. G. Acids and bases. Alkalinity and pH in natural waters. in Principles and Applications of Aquatic Chemistry (eds. Morel, F. & Hering, J. G.) 127–178 (Wiley, New York, 1983).

  • Dalla Via, J. et al. Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 163, 267–278 (1998).

    Article 

    Google Scholar 

  • Enríquez, S. & Pantoja-Reyes, N. I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145, 235–243 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Ryland, J. S. Bryozoans (Hutchinson Unviersity Library, 1970).

  • McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (University of Chicago Press, 1991).

  • Mullineaux, L. S. & Garland, E. D. Larval recruitment in response to manipulated field flows. Mar. Biol. 116, 667–683 (1993).

    Article 

    Google Scholar 

  • Qian, P. Y., Rittschof, D. & Sreedhar, B. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar. Ecol. Prog. Ser. 207, 109–121 (2000).

    Article 

    Google Scholar 

  • Qian, P. Y., Rittschof, D., Sreedhar, B. & Chia, F. S. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Mar. Ecol. Prog. Ser. 191, 141–151 (1999).

    Article 

    Google Scholar 

  • Judge, M. L. & Craig, S. F. Positive flow dependence in the initial colonization of a fouling community: results from in situ water current manipulations. J. Exp. Mar. Bio. Ecol. 210, 209–222 (1997).

    Article 

    Google Scholar 

  • Rossbach, F. I., Casoli, E., Beck, M. & Wild, C. Mediterranean red macro algae mats as habitat for high abundances of serpulid polychaetes. Diversity 40, 1–13 (2021).

  • Cummings, V., Vopel, K. & Thrush, S. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behaviour of post-settlement bivalves. Mar. Ecol. Prog. Ser. 383, 173–185 (2009).

    CAS 
    Article 

    Google Scholar 

  • Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).

    CAS 

    Google Scholar 

  • Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).

    Article 

    Google Scholar 

  • Gacia, E., Granata, T. C. & Duarte, C. M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 65, 255–268 (1999).

    Article 

    Google Scholar 

  • Hendriks, I. E., Sintes, T., Bouma, T. J. & Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser. 356, 163–173 (2008).

    Article 

    Google Scholar 

  • Prathep, A., Marrs, R. H. & Norton, T. A. Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Mar. Biol. 142, 381–390 (2003).

    Article 

    Google Scholar 

  • Piazzi, L. & Ceccherelli, G. Alpha and beta diversity in Mediterranean macroalgal assemblages: relevancy and type of effect of anthropogenic stressors vs natural variability. Mar. Biol. 167, 1–10 (2020).

    Article 

    Google Scholar 

  • Lavender, J. T., Dafforn, K. A., Bishop, M. J. & Johnston, E. L. Small-scale habitat complexity of artificial turf influences the development of associated invertebrate assemblages. J. Exp. Mar. Bio. Ecol. 492, 105–112 (2017).

    Article 

    Google Scholar 

  • Thomsen, M. S., de Bettignies, T., Wernberg, T., Holmer, M. & Debeuf, B. Harmful algae are not harmful to everyone. Harmful Algae 16, 74–80 (2012).

    Article 

    Google Scholar 

  • Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44, 103–110 (1997).

    Article 

    Google Scholar 

  • Infantes, E., Terrados, J., Orfila, A., Cañellas, B. & Álvarez-Ellacuria, A. Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot. Mar. 52, 419–427 (2009).

    Article 

    Google Scholar 

  • Procaccini, G. et al. The seagrasses of the Western Mediterranean. in World Atlas of Seagrasses (eds. Green, E. P. & Short, F. T.) 48–58 (University of California Press, 2003).

  • Geist, J. & Hawkins, S. J. Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 942–962 (2016).

    Article 

    Google Scholar 

  • Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. & Wilcox, D. J. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquat. Bot. 84, 26–36 (2006).

    Article 

    Google Scholar 

  • Mason, R., Hock, K. & Mumby, P. J. Identification of important source reefs for Great Barrier Reef Recovery following the 2016-17 Thermal Stress Events. Rep. to Natl. Environ. Sci. Progr. p. 11 (2018).

  • Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McCall, B. D. & Pennings, S. C. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill. PLoS One 7, 1–7 (2012).

    Article 
    CAS 

    Google Scholar 

  • Bianchi, C. N. et al. Hard bottoms. Mediterr. Mar. Benthos a Man. Methods its Sampl. study 6, 185–215 (2004).

    Google Scholar 

  • Orth, R. J., Heck, K. L. & van Montfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350 (1984).

    Article 

    Google Scholar 

  • Bianchi, C. N., Bedulli, D., Morri, C., Occhipinti Ambrogi, A. L’herbier de Posidonies: Ecosystème ou carrefour écoéthologique? In International Workshop Posidonia Oceanica Beds. (eds. Boudouresque, C. F., Meinesz, A., Fresi, E. & Gravez, V.) (GIS Posidonie, Marseille, 1989).

  • Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: An overview. Mar. Ecol. 37, 3–41 (2016).

    Article 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing (2017).

  • RStudio Team. RStudio: Integrated Development for R (2020).

  • Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.22 (2021).

  • Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Article 

    Google Scholar 

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).

  • Daraghmeh, N. & El-Khaled, Y. C. iNEXT4steps workflow for biodiversity assessment and comparison. protocols.io 1–5 (2021) https://doi.org/10.17504/protocols.io.bu6fnzbn.

  • Chao, A. & Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 6, 873–882 (2015).

    Article 

    Google Scholar 

  • Chao, A., & Ricotta, C. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology 100, 1–15 (2019).

    Article 

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    Article 

    Google Scholar 

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).

  • Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to Software and Statistical Methods (2008).

  • Rasband, W. ImageJ (1997).

  • Buia, M. C. M. C., Gambi, M. C. & Dappiano, M. Seagrass systems. Biol. Mar. Mediterr. 11, 133–183 (2004).

    Google Scholar 

  • Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).

    Article 

    Google Scholar 

  • Klain, D. A. An intuitive derivation of Heron’s formula. Am. Math. Mon. 111, 709–712 (2004).

    Article 

    Google Scholar 

  • Duggins, D. O., Eckman, J. E. & Sewell, A. T. Ecology of understory kelp environments. II. Effects of kelps on recruitment of benthic invertebrates. J. Exp. Mar. Bio. Ecol. 143, 27–45 (1990).

    Article 

    Google Scholar 

  • Eckman, J. E., Duggins, D. O. & Sewell, A. T. Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Bio. Ecol. 129, 173–187 (1989).

    Article 

    Google Scholar 

  • Mabrouk, L., Ben Brahim, M., Hamza, A. & Bradai, M. N. Diversity and temporal fluctuations of epiphytes and sessile invertebrates on the rhizomes Posidonia oceanica in a seagrass meadow off Tunisia. Mar. Ecol. 35, 212–220 (2014).

    Article 

    Google Scholar 

  • Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. in Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) 123–195 (Taylor & Francis, 2006).

  • Ballesteros, E. et al. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 82, 477–484 (2009).

    Article 

    Google Scholar 

  • Cleary, D. F. R. et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Mar. Pollut. Bull. 110, 701–717 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Milne, R. & Griffiths, C. Invertebrate biodiversity associated with algal turfs on a coral-dominated reef. Mar. Biodivers. 44, 181–188 (2014).

    Article 

    Google Scholar 

  • Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep–water Lophelia reefs in Norway. Proc. 10th Int. Coral Reef. Symp. 1868, 1849–1868 (2006).

    Google Scholar 

  • Henry, L. A., Davies, A. J. & Roberts, J. M. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs 29, 427–436 (2010).

    Article 

    Google Scholar 

  • Farnsworth, E. J. & Ellison, A. M. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities. Ecol. Monogr. 66, 45–66 (1996).

    Article 

    Google Scholar 

  • Graham, M. H. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7, 341–357 (2004).

    Article 

    Google Scholar 

  • Gutt, J., Sirenko, B. I., Arntz, W. E., Smirnov, I. S. & Broyer, C. D. E. Biodiversity of the Weddell Sea: macrozoobenthic species (demersal fish included) sampled during the expedition ANT Xllll3 (EASIZ I) with RV ‘Polarstern’. Ber. Polarforsch. Meeresforsch. 372, 118 (2000).

    Google Scholar 


  • Source: Ecology - nature.com

    Helping renewable energy projects succeed in local communities

    Could used beer yeast be the solution to heavy metal contamination in water?