in

Fluctuating insect diversity, abundance and biomass across agricultural landscapes

  • Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Uchida, K. & Ushimaru, A. Biodiversity declines due to abandonment and intensification of agricultural lands: Patterns and mechanisms. Ecol. Monogr. 84, 637–658 (2014).

    Google Scholar 

  • Habel, J. C. et al. Butterfly community shifts over two centuries: Shifts in butterfly communities. Conserv. Biol. 30, 754–762 (2016).

    PubMed 

    Google Scholar 

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Cons. 128, 542–552 (2006).

    Google Scholar 

  • Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H. & Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511, 341–343 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).

    Google Scholar 

  • Uhl, B., Wölfling, M. & Fiedler, K. Understanding small-scale insect diversity patterns inside two nature reserves: The role of local and landscape factors. Biodivers. Conserv. 29, 2399–2418 (2020).

    Google Scholar 

  • Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas, J. A. Butterfly communities under threat. Science 353, 216–218 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanders, J. & Hess, J. Benefits of organic farming to environment and society. Thünen Report 65, 362 (2019).

    Google Scholar 

  • Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177 (2019).

    Google Scholar 

  • Brühl, C. A. et al. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 11, 24144 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Den Boer, P. J. & van Dijk, T. S. Carabid Beetles in A Changing Environment (Agricultural Univ, 1995).

    Google Scholar 

  • Cristescu, M. E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol. 29, 566–571 (2014).

    PubMed 

    Google Scholar 

  • Hausmann, A. et al. Toward a standardized quantitative and qualitative insect monitoring scheme. Ecol. Evol. 10, 4009–4020 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS One 8, e66213 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hausmann, A. et al. Genetic patterns in european geometrid moths revealed by the Barcode Index Number (BIN) system. PLoS One 8, e84518 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 1–14 (2010).

    Google Scholar 

  • Schlick-Steiner, B. C. et al. Integrative taxonomy: A multisource approach to exploring biodiversity. Ann. Rev. Entomol. 55, 421–438 (2010).

    CAS 

    Google Scholar 

  • Schlick‐Steiner, B. C., Arthofer, W., & Steiner, F. M. Take up the challenge! Opportunities for evolution research from resolving conflict in integrative taxonomy (2014).

  • Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27, 480–488 (2012).

    PubMed 

    Google Scholar 

  • Morinière, J. et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol. Ecol. Res. 19, 900–928 (2019).

    Google Scholar 

  • Kortmann, M. et al. Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. Ecol. Appl. 32, e2516 (2022).

    PubMed 

    Google Scholar 

  • Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10 (2018).

    Google Scholar 

  • Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics: Climate drivers of population dynamics. Ecol. Lett. 15, 502–508 (2012).

    PubMed 

    Google Scholar 

  • Conrad, K. F., Fox, R. & Woiwod, I. P. Monitoring biodiversity: Measuring long-term changes in insect abundance. In Insect Conservation Biology (eds Stewart, A. J. A. et al.) 203–225 (CABI, 2007). https://doi.org/10.1079/9781845932541.0203.

    Chapter 

    Google Scholar 

  • Flohre, A. et al. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol. Appl. Publ. Ecol. Soc. Am. 21, 1772–1781 (2011).

    Google Scholar 

  • Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. In Advances in Ecological Research, vol ***55 43–97 (Elsevier, 2016).

    Google Scholar 

  • Segerer, A. H. & Rosenkranz, E. Das grosse Insektensterben: Was es Bedeutet und was Wir Jetzt tun Müssen (Oekom Verlag, 2019).

    Google Scholar 

  • Batáry, et al. The former Iron Curtain still drives biodiversity-profit trade-offs in German agriculture. Nat. Ecol. Evol. 1, 1279–1284 (2017).

    PubMed 

    Google Scholar 

  • Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed 

    Google Scholar 

  • Birkhofer, K., Smith, H. G., Weisser, W. W., Wolters, V. & Gossner, M. M. Land-use effects on the functional distinctness of arthropod communities. Ecography 38, 889–900 (2015).

    Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Google Scholar 

  • Habel, J. C., Seibold, S., Ulrich, W. & Schmitt, T. Seasonality overrides differences in butterfly species composition between natural and anthropogenic forest habitats. Anim. Conserv. 21, 405–413 (2018).

    Google Scholar 

  • Schmitt, T., Ulrich, W., Delic, A., Teucher, M. & Habel, J. C. Seasonality and landscape characteristics impact species community structure and temporal dynamics of East African butterflies. Sci. Rep. 11, 15103 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ssymank, A. et al. Praktische Hinweise und Empfehlungen zur Anwendung von Malaisefallen für Insekten in der Biodiversitätserfassung und im Monitoring. Entomol. Verein Krefeld 1, 1–12 (2018).

    Google Scholar 

  • Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Elbrecht, V. & Steinke, D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw. Biol. 64, 380–387 (2019).

    CAS 

    Google Scholar 

  • Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl. Acad. Sci. 118, 25 (2021).

    Google Scholar 

  • Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 1–9 (2021).

    Google Scholar 

  • Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morinière, J. et al. Species identification in malaise trap samples by DNA barcoding based on NGS Technologies and a scoring matrix. PLoS One 11, e0155497 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Google Scholar 

  • Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).

    Google Scholar 


  • Source: Ecology - nature.com

    “Drawing Together” is awarded Norman B. Leventhal City Prize

    Finding community in high-energy-density physics