in

Four millennia of long-term individual foraging site fidelity in a highly migratory marine predator

  • Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).

    Article 

    Google Scholar 

  • Lewison, R. et al. Research priorities for seabirds: improving conservation and management in the 21st century. Endanger. Species Res 17, 93–121 (2012).

    Article 

    Google Scholar 

  • Hasegawa, H. & DeGange, A. R. The Short-tailed Albatross, Diomedea albatrus, its status, distribution and natural history. Am. Birds 36, 806–814 (1982).

    Google Scholar 

  • Tickell, W. L. N. Albatrosses (Pica Press, 2000).

  • BirdLife International. Phoebastria albatrus. The IUCN Red List of Threatened Species, e.T22698335A132642113 https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22698335A132642113.en (2018).

  • Japan Ministry of the Environment. Ministry of the Environment Red List (Government of Japan, 2020).

  • COSEWIC. COSEWIC Assessment and Status Report on the Short-tailed Albatross Phoebastria albatrus in Canada (Committee on the Status of Endangered Wildlife in Canada, 2013).

  • Environment Canada. Recovery Strategy for the Short-tailed Albatross (Phoebastria albatrus) and the Pink-footed Shearwater (Puffinus creatopus) in Canada (Environment Canada, 2008).

  • United States of America Fish and Wildlife Service. Endangered and Threatened Wildlife and Plants; Final Rule to List the Short-tailed Albatross as Endangered in the United States. 65 FR 46643, 46643–4654, Document Number 00–19123 (2000).

  • United States of America Fish and Wildlife Service. Short-tailed Albatross (Phoebastria albatrus) 5-Year Review: Summary and Evaluation (United States of America Fish and Wildlife Service, 2020).

  • United States of America Fish and Wildlife Service. Short-tailed Albaross Recovery Plan (United States of America Fish and Wildlife Service, 2008).

  • Orben, R. A. et al. Ontogenetic changes in at-sea distributions of immature short-tailed albatrosses Phoebastria albatrus. Endanger. Species Res 35, 23–37 (2018).

    Article 

    Google Scholar 

  • Orben, R. A. et al. Across borders: external factors and prior behaviour influence North Pacific albatross associations with fishing vessels. J. Appl. Ecol. 58, 1272–1283 (2021).

    Article 

    Google Scholar 

  • Fox, C. H., Robertson, C., O’Hara, P. D., Tadey, R. & Morgan, K. H. Spatial assessment of albatrosses, commercial fisheries, and bycatch incidents on Canada’s Pacific coast. Mar. Ecol. Prog. Ser. 672, 205–222 (2021).

    Article 

    Google Scholar 

  • Piatt, J. F. et al. Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: implications for conservation. Deep Sea Res. Part II 53, 387–398 (2006).

    Article 

    Google Scholar 

  • Suryan, R. M. et al. Migratory routes of short-tailed albatrosses: use of exclusive economic zones of North Pacific Rim countries and spatial overlap with commercial fisheries in Alaska. Biol. Conserv. 137, 450–460 (2007).

    Article 

    Google Scholar 

  • Suryan, R. M. & Fischer, K. N. Stable isotope analysis and satellite tracking reveal interspecific resource partitioning of nonbreeding albatrosses off Alaska. Can. J. Zool. 88, 299–305 (2010).

    CAS 
    Article 

    Google Scholar 

  • Zador, S. G., Punt, A. E. & Parrish, J. K. Population impacts of endangered short-tailed albatross bycatch in the Alaskan trawl fishery. Biol. Conserv. 141, 872–882 (2008).

    Article 

    Google Scholar 

  • Geernaert, T. O., Gilroy, H. L., Kaimmer, S. M., Williams, G. H. & Trumble, R. J. A Feasibility Study that Investigates Options for Monitoring Bycatch of the Short-tailed Albatross in the Pacific Halibut Fishery off Alaska (International Pacific Halibut Commission, 2001).

  • Guy, T. J. et al. Overlap of North Pacific albatrosses with the U.S. west coast groundfish and shrimp fisheries. Fish. Res. 147, 222–234 (2013).

    Article 

    Google Scholar 

  • Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Natural 161, 1–28 (2003).

    Article 

    Google Scholar 

  • Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).

    Article 

    Google Scholar 

  • Wakefield, E. D. et al. Long-term individual foraging site fidelity—why some gannets don’t change their spots. Ecology 96, 3058–3074 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Votier, S. C. et al. Effects of age and reproductive status on individual foraging site fidelity in a long-lived marine predator. Proc. R. Soc. B 284, 20171068 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sztukowski, L. A. et al. Sex differences in individual foraging site fidelity of Campbell albatross. Mar. Ecol. Prog. Ser. 601, 227–238 (2018).

    Article 

    Google Scholar 

  • Gutowsky, S. E. et al. Divergent post-breeding distribution and habitat associations of fledgling and adult Black-footed Albatrosses Phoebastria nigripes in the North Pacific. Ibis 156, 60–72 (2014).

    Article 

    Google Scholar 

  • Weimerskirch, H., Åkesson, S. & Pinaud, D. Postnatal dispersal of wandering albatrosses Diomedea exulans: implications for the conservation of the species. J. Avian Biol. 37, 23–28 (2006).

    Google Scholar 

  • Olson, S. L. & Hearty, P. J. Probable extirpation of a breeding colony of Short-tailed Albatross (Phoebastria albatrus) on Bermuda by Pleistocene sea-level rise. Proc. Natl Acad. Sci. 100, 12825–12829 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dall, W. H. Notes on pre-historic remains in the Aleutian islands. Proc. Calif. Acad. Sci. 4, 283–287 (1872).

    Google Scholar 

  • Eda, M. et al. Inferring the ancient population structure of the vulnerable albatross Phoebastria albatrus, combining ancient DNA, stable isotope, and morphometric analyses of archaeological samples. Conserv. Genet. 13, 143–151 (2012).

    Article 

    Google Scholar 

  • Cousins, K. L., Dalzell, P. & Gilman, E. Managing pelagic longline-albatross interactions in the North Pacific Ocean. Mar. Ornithol 28, 159–174 (2000).

    Google Scholar 

  • Hobson, K. A. & Montevecchi, W. A. Stable isotopic determinations of trophic relationships of great auks. Oecologia 87, 528–531 (1991).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Fuller, B. T. et al. Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphaltic deposit at Rancho La Brea, California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109383 (2020).

    Article 

    Google Scholar 

  • Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94, 181–188 (1992).

    Article 

    Google Scholar 

  • Hyland, C., Scott, M. B., Routledge, J. & Szpak, P. Stable carbon and nitrogen isotope variability of bone collagen to determine the number of isotopically distinct specimens. J. Archaeol. Method Theory https://doi.org/10.1007/s10816-021-09533-7 (2021).

    Article 

    Google Scholar 

  • Hedges, R. E. M., Clement, J. G., Thomas, D. L. & O’Connell, T. C. Collagen turnover in the adult femoral mid‐shaft: modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 133, 808–816 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Guiry, E. J., Orchard, T. J., Royle, T. C. A., Cheung, C. & Yang, D. Y. Dietary plasticity and the extinction of the passenger pigeon (Ectopistes migratorius). Quat. Sci. Rev. 233, 106225 (2020).

    Article 

    Google Scholar 

  • Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).

    CAS 
    Article 

    Google Scholar 

  • DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    CAS 
    Article 

    Google Scholar 

  • Hobson, K. A., Ambrose, W. G. Jr & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).

    Article 

    Google Scholar 

  • Sigman, D., Karsh, K. & Casciotti, K. Ocean process tracers: nitrogen isotopes in the ocean in Encyclopedia of Ocean Science (eds Steele, J. H. et al.) 4139–4152 (Academic Press, 2009).

  • Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: implications for the study of past subsistence and environmental change. Front. Ecol. Evol 7, 313 (2019).

    Article 

    Google Scholar 

  • Rau, G. H., Takahashi, T. & Des Marais, D. J. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341, 516–518 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).

    CAS 
    Article 

    Google Scholar 

  • Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and (CO2) aq: theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).

    CAS 
    Article 

    Google Scholar 

  • Vokhshoori, N. L. et al. Broader foraging range of ancient short-tailed albatross populations into California coastal waters based on bulk tissue and amino acid isotope analysis. Mar. Ecol. Prog. Ser. 610, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B. & McCarthy, M. D. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals. Proc. Natl Acad. Sci. 108, 1011–1015 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Szpak, P., Savelle, J. M., Conolly, J. & Richards, M. P. Variation in late holocene marine environments in the Canadian Arctic Archipelago: evidence from ringed seal bone collagen stable isotope compositions. Quat. Sci. Rev. 211, 136–155 (2019).

    Article 

    Google Scholar 

  • Guiry, E. J. et al. Deforestation caused abrupt shift in Great Lakes nitrogen cycle. Limnol. Oceanogr. 65, 1921–1935 (2020).

    CAS 
    Article 

    Google Scholar 

  • Wiley, A. E. et al. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs. Proc. Natl Acad. Sci. 110, 8972–8977 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).

    CAS 
    Article 

    Google Scholar 

  • McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & McCarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).

    CAS 
    Article 

    Google Scholar 

  • Chikaraishi, Y. et al. Determination of aquatic food‐web structure based on compound‐specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).

    CAS 
    Article 

    Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).

    Article 

    Google Scholar 

  • Guiry, E. J. & Szpak, P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci. 132, 105416 (2021).

    CAS 
    Article 

    Google Scholar 

  • Thompson, D. R. & Furness, R. W. Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in Northern Fulmars. Auk 112, 493–498 (1995).

    Article 

    Google Scholar 

  • Carter, H. R. & Sealy, S. G. Historical occurrence of the short-tailed Albatross in British Columbia and Washington. 1841–1958. Wildl. Afield 11, 24–38 (2014).

    Google Scholar 

  • Crockford, S. The Archaeological History of Short-tailed Albatross in British Columbia: A Review and Summary of STAL Skeletal Remains, as Compared to Other Avian Species, Identified from Historic and Prehistoric Midden Deposits. Report on file, Canadian Wildlife Service (2003).

  • Borrmann, R. M., Phillips, R. A., Clay, T. A. & Garthe, S. High foraging site fidelity and spatial segregation among individual great black-backed gulls. J. Avian Biol. 50, e02156 (2019).

    Article 

    Google Scholar 

  • Wilkinson, B. P., Haynes-Sutton, A. M., Meggs, L. & Jodice, P. G. High spatial fidelity among foraging trips of Masked Boobies from Pedro Cays, Jamaica. PLoS ONE 15, e0231654 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Grémillet, D. et al. Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 268, 265–279 (2004).

    Article 

    Google Scholar 

  • Irons, D. B. Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79, 647–655 (1998).

    Article 

    Google Scholar 

  • Piper, W. H. Making habitat selection more “familiar”: a review. Behav. Ecol. Sociobiol. 65, 1329–1351 (2011).

    Article 

    Google Scholar 

  • Davoren, G. K., Montevecchi, W. A. & Anderson, J. T. Search strategies of a pursuit‐diving marine bird and the persistence of prey patches. Ecol. Monogr. 73, 463–481 (2003).

    Article 

    Google Scholar 

  • Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).

    Article 

    Google Scholar 

  • Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McAllister, N. M. Avian fauna from the Yuquot excavation in The Yuquot Project, Volume 2 (eds. Folan, W. J. & Dewhirst, J.) 103–174 (National Historic Parks and Sites Branch, 1980).

  • Drucker, P. I. The Northern and Central Nootkan tribes. Bureau of American Ethnology Bulletin 144, 1–480 (1951).

    Google Scholar 

  • Lepofsky, D. & Caldwell, M. Indigenous marine resource management on the Northwest Coast of North America. Ecol. Process 2, 12 (2013).

    Article 

    Google Scholar 

  • Dewhirst, J. The Indigenous Archaeology of Yuquout, a Nootkan Outside Village (National Historic Parks and Sites Branch, 1980).

  • Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Guiry, E. J. & Hunt, B. P. V. Integrating fish scale and bone isotopic compositions for ‘deep time’ retrospective studies. Mar. Environ. Res. 160, 104982 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Hobson, K. A., Atwell, L. & Wassenaar, L. I. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proc. Natl Acad. Sci. 96, 8003–8006 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom 17, 2483–2487 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Qi, H. et al. A new organic reference material, l-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41. Rapid Commun. Mass Spectrom 30, 859–866 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep 13, 609–616 (2017).

    Google Scholar 

  • Hammer, Ø., Haper, A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2019).


  • Source: Ecology - nature.com

    Engineers enlist AI to help scale up advanced solar cell manufacturing

    Developing electricity-powered, low-emissions alternatives to carbon-intensive industrial processes