in

Fourteen years of continuous soil moisture records from plant and biocrust-dominated microsites

  • 1.

    Cherlet, M., et al (Eds.). World Atlas of Desertification. Luxembourg: Publication Office of the European Union (2018).

  • 2.

    Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 20, 3159–78 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Maestre, F. T. et al. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid Environ. 75, 1282–91 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Noy-Meir, I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Evol. Syst. 4(1), 25–51 (1973).

    Google Scholar 

  • 5.

    Puigdefábregas, J., Sole, A., Gutierrez, L., Del Barrio, G. & Boer, M. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Sci. Rev. 48(1–2), 39–70 (1999).

    ADS 

    Google Scholar 

  • 6.

    Puigdefábregas, J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf. Process. Landf. 30(2), 133–147 (2005).

    ADS 

    Google Scholar 

  • 7.

    Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17(7), 1242–1256 (2014).

    CAS 

    Google Scholar 

  • 8.

    Meza, F. J., Montes, C., Bravo-Martínez, F., Serrano-Ortiz, P. & Kowalski, A. S. Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile. Sci. Rep. 8, 8570 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–35 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • 10.

    Safirel, U & Adeel, Z. Ecosystems and human well-being: current state and trends, vol. 1. Washington, DC: Island Press (2005).

  • 11.

    Brocca, L., Melone, F., Moramarco, T. & Morbidelli, R. Spatial-temporal variability of soil moisture and its estimation across scales: Soil Moisture Spatiotemporal Variability. Water Resour. Res. 46, W02516 (2010).

    ADS 

    Google Scholar 

  • 12.

    Brocca, L. et al. Assimilation of surface-and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Trans. Geosci. Remote Sens. 50, 2542–2555 (2012).

    ADS 

    Google Scholar 

  • 13.

    Parinussa, R. et al. Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite. Int. J. Remote Sens. 35, 7007–7029 (2014).

    Google Scholar 

  • 14.

    Cui, Y. et al. A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015. Sci. Data 6, 247 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Solomon, S. et al. (Eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel in Climate Change. Cambridge and New York: Cambridge University Press (2007).

  • 16.

    Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. Biogeosci. 125(2), e2019JG005266 (2020).

    ADS 

    Google Scholar 

  • 17.

    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11(1), 38–44 (2021).

    ADS 

    Google Scholar 

  • 18.

    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 119 (2021).

  • 19.

    Naz, B. S., Kollet, S., Franssen, H. J. H., Montzka, C. & Kurtz, W. A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data 7(1), 1–14 (2020).

    Google Scholar 

  • 20.

    Tietjen, B. et al. Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology 3, 226–237 (2010).

    Google Scholar 

  • 21.

    Cui, Y. et al. A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015. Sci. Data 6(1), 1–7 (2019).

    Google Scholar 

  • 22.

    Tongway, D.J., Valentin, C., Seghieri, J. (Eds.). Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management. Berlin: Springer (2001).

  • 23.

    Maestre, F. T. & Cortina, J. Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241(2), 279–291 (2002).

    CAS 

    Google Scholar 

  • 24.

    Maestre, F.T. et al. Biogeography of global drylands. New Phytol. (2021).

  • 25.

    Bhark, E. W. & Small, E. E. Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6, 0185–96 (2003).

    Google Scholar 

  • 26.

    Yepez, E. A. et al. Dynamics of transpiration and evaporation following a moisture pulse in semiarid grassland: a chamber-based isotope method for partitioning flux components. Agric. For. Meteorol. 132, 359–76 (2005).

    ADS 

    Google Scholar 

  • 27.

    Eldridge, D. J. et al. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13(4), 499–510 (2010).

    MathSciNet 

    Google Scholar 

  • 28.

    Cerdà, A. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. J. Arid Environ. 36(1), 37–51 (1997).

    ADS 
    MathSciNet 

    Google Scholar 

  • 29.

    Weber, B., Büdel, B. & Belnap, J. (Eds.). Biological soil crusts: an organizing principle in drylands. Cham: Springer (2016).

  • 30.

    Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 26(10), 6003–6014 (2020).

    ADS 

    Google Scholar 

  • 31.

    Castillo-Monroy, A. P., Delgado-Baquerizo, M., Maestre, F. T. & Gallardo, A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: Insights from a Mediterranean grassland. Plant Soil 333, 21–34 (2010).

    CAS 

    Google Scholar 

  • 32.

    Escolar, C., Martínez, I., Bowker, M. A. & Maestre, F. T. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos. T. R. Soc. B. 367(1606), 3087–3099 (2012).

    Google Scholar 

  • 33.

    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Change Biol. 19, 3835–3847 (2013).

    ADS 

    Google Scholar 

  • 34.

    Delgado‐Baquerizo, M. et al. Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J. Ecol. 102(6), 1592–1605 (2014).

    Google Scholar 

  • 35.

    Delgado‐Baquerizo, M. et al. Differences in thallus chemistry are related to species‐specific effects of biocrust‐forming lichens on soil nutrients and microbial communities. Funct. Ecol. 29(8), 1087–1098 (2015).

    Google Scholar 

  • 36.

    Lafuente, A., Berdugo, M., Ladron de Guevara, M., Gozalo, B. & Maestre, F. T. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Ecohydrology 11(6), e1935 (2018).

    PubMed 

    Google Scholar 

  • 37.

    IUSS Working Group WRB. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. Rome, Italy: FAO (2006).

  • 38.

    Chamizo, S., Cantón, Y., Lázaro, R. & Domingo, F. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. J. Hydrol. 489, 74–84 (2013).

    ADS 

    Google Scholar 

  • 39.

    Chamizo, S., Cantón, Y., Rodríguez‐Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrol. 9(7), 1208–1221 (2016).

    Google Scholar 

  • 40.

    Dalton, M., Buss, P., Treijs, A. & Portmann, M. in Irrigation Australia Limited Regional Conference (Penrith Panthers, 2015).

  • 41.

    Francesca, V., Osvaldo, F., Stefano, P. & Paola, R. P. Soil moisture measurements: Comparison of instrumentation performances. J. Irrig. Drain. Eng. 136(2), 81–89 (2010).

    Google Scholar 

  • 42.

    Payero, J. O., Nafchi, A. M., Davis, R. & Khalilian, A. An Arduino-based wireless sensor network for soil moisture monitoring using Decagon EC-5 sensors. Open J. soil Sci. 7(10), 288 (2017).

    Google Scholar 

  • 43.

    Payero, J. O., Qiao, X., Khalilian, A., Mirzakhani-Nafchi, A. & Davis, R. Evaluating the effect of soil texture on the response of three types of sensors used to monitor soil water status. JWARP 9(06), 566 (2017).

    Google Scholar 

  • 44.

    Sakaki, T., Limsuwat, A., Smits, K.M. & Illangasekare, T.H. Empirical two‐point α‐mixing model for calibrating the ECH2O EC‐5 soil moisture sensor in sands. Water Resour. Res. 44(4) (2008).

  • 45.

    Sharma, H., Shukla, M. K., Bosland, P. W. & Steiner, R. Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agric. Water Manag. 179, 81–91 (2017).

    Google Scholar 

  • 46.

    Castillo-Monroy, A. P., Maestre, F. T., Rey, A., Soliveres, S. & García-Palacios, P. Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosyst. 14(5), 835–847 (2011).

    CAS 

    Google Scholar 

  • 47.

    Steven, B., Gallegos-Graves, L. V., Belnap, J. & Kuske, C. R. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol. Ecol. 86(1), 101–113 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Ding, J. & Eldridge, D. J. Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant Soil 450(1), 429–441 (2020).

    CAS 

    Google Scholar 

  • 49.

    Rodríguez-Caballero, E. et al. Ecosystem services provided by biocrusts: from ecosystem functions to social values. J. Arid Envion. 159, 45–53 (2018).

    ADS 

    Google Scholar 

  • 50.

    Zaady, E., Eldridge, D.J. & Bowker, M.A. in Biological soil crusts: An organizing principle in drylands (Springer, 2016).

  • 51.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 52.

    Ushey, K. renv: Project Environments. R package version 0.13.2. https://CRAN.R-project.org/package=renv (2021).

  • 53.

    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.14.0. https://CRAN.R-project.org/package=data.table (2021).

  • 54.

    Firke, S. janitor: Simple Tools for Examining and Cleaning Dirty Data. R package version 2.1.0. https://CRAN.R-project.org/package = janitor (2021).

  • 55.

    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686 (2019).

    ADS 

    Google Scholar 

  • 56.

    Zhu, H. kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R package version 1.3.4. https://CRAN.R-project.org/package=kableExtra (2021).

  • 57.

    Microsoft & Weston, S. foreach: Provides Foreach Looping Construct. R package version 1.5.1. https://CRAN.R-project.org/package=foreach (2020).

  • 58.

    Microsoft Corporation & Weston, S. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel (2020).

  • 59.

    Wickham, H. & Hester, J. readr: Read Rectangular Text Data. R package version 1.4.0. https://CRAN.R-project.org/package=readr (2020).

  • 60.

    Ooms, J. writexl: Export Data Frames to Excel ‘xlsx’ Format. R package version 1.4.0. https://CRAN.R-project.org/package=writexl (2021).

  • 61.

    Müller, K., Wickham, H., James, D.A. & Falcon, S. RSQLite: ‘SQLite’ Interface for R. R package version 2.2.7. https://CRAN.R-project.org/package=RSQLite (2021).

  • 62.

    Csárdi, G., Podgórski, K. & Geldreich, R. zip: Cross-Platform ‘zip’ Compression. R package version 2.1.1. https://CRAN.R-project.org/package=zip (2020).

  • 63.

    Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.31. https://CRAN.R-project.org/package=knitr (2021).

  • 64.

    R Special Interest Group on Databases (R-SIG-DB), Wickham, H. & Müller, K. DBI: R Database Interface. R package version 1.1.1. https://CRAN.R-project.org/package=DBI (2021).

  • 65.

    Moreno, J. et al. The MOISCRUST dataset. figshare https://doi.org/10.6084/m9.figshare.14748384 (2021).

  • 66.

    Topp, G. C. & Davis, J. L. Measurement of soil water content using time-domain reflectometry (TDR): a field evaluation. Soil Sci. Soc. Am. J. 49, 19–24 (1985).

    ADS 

    Google Scholar 

  • 67.

    Cantón, Y., Solé-Benet, A. & Domingo, F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. J. Hydrol. 285, 199–214 (2004).

    ADS 

    Google Scholar 

  • 68.

    Breshears, D. D. & Barnes, F. J. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landsc. Ecol. 14, 465–78 (1999).

    Google Scholar 

  • 69.

    D’Odorico, P., Caylor, K., Okin, G. S. & Scanlon, T. M. On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J. Geophys. Res. 112, G04010 (2007).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Bringing climate reporting to local newsrooms

    Cryofouling avoidance in the Antarctic scallop Adamussium colbecki