in

Functional representativeness and distinctiveness of reintroduced birds and mammals in Europe

  • Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142620 (2015).

    Google Scholar 

  • Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 

    Google Scholar 

  • Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?. J. Veg. Sci. 27, 646–653 (2016).

    Google Scholar 

  • Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B Biol. Sci. 269, 1721–1727 (2002).

    Google Scholar 

  • Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).

    Google Scholar 

  • Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).

    Google Scholar 

  • Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Google Scholar 

  • Laughlin, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17, 771–784 (2014).

    PubMed 

    Google Scholar 

  • Laughlin, D. C., Strahan, R. T., Huffman, D. W. & Sánchez Meador, A. J. Using trait-based ecology to restore resilient ecosystems: Historical conditions and the future of montane forests in western North America. Restor. Ecol. 25, S135–S146 (2017).

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Google Scholar 

  • Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).

    PubMed 

    Google Scholar 

  • Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4(104), 112 (2014).

    Google Scholar 

  • Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B 283, 20160084 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. (IUCN Species Survival Commission, 2013).

  • Bakker, E. S. & Svenning, J.-C. Trophic rewilding: Impact on ecosystems under global change. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170432 (2018).

    Google Scholar 

  • Garrido, P. et al. Experimental rewilding enhances grassland functional composition and pollinator habitat use. J. Appl. Ecol. 56, 946–955 (2019).

    Google Scholar 

  • Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).

    PubMed 

    Google Scholar 

  • Chauvenet, A. L. M., Canessa, S. & Ewen, J. G. Setting objectives and defining the success of reintroductions. In Reintroduction of Fish and Wildlife Populations 105–121 (University of California Press, 2016).

  • Ewen, J. G., Soorae, P. S. & Canessa, S. Reintroduction objectives, decisions and outcomes: Global perspectives from the herpetofauna. Anim. Conserv. 17, 74–81 (2014).

    Google Scholar 

  • Kleiman, D. G., Price, M. R. S. & Beck, B. B. Criteria for reintroductions. In Creative Conservation: Interactive Management of Wild and Captive Animals (eds. Olney, P. J. S., Mace, G. M. & Feistner, A. T. C.) 287–303 (Springer Netherlands, 1994). https://doi.org/10.1007/978-94-011-0721-1_14.

  • Hunter, M. L. & Hutchinson, A. The virtues and shortcomings of parochialism: Conserving species that are locally rare, but globally common. Conserv. Biol. 8, 1163–1165 (1994).

    Google Scholar 

  • Brichieri-Colombi, T. A. & Moehrenschlager, A. Alignment of threat, effort, and perceived success in North American conservation translocations. Conserv. Biol. 30, 1159–1172 (2016).

    PubMed 

    Google Scholar 

  • Thévenin, C., Mouchet, M., Robert, A., Kerbiriou, C. & Sarrazin, F. Reintroductions of birds and mammals involve evolutionarily distinct species at the regional scale. PNAS https://doi.org/10.1073/pnas.1714599115 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seddon, P. J., Soorae, P. S. & Launay, F. Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51–58 (2005).

    Google Scholar 

  • Thévenin, C., Morin, A., Kerbiriou, C., Sarrazin, F. & Robert, A. Heterogeneity in the allocation of reintroduction efforts among terrestrial mammals in Europe. Biol. Conserv. 241, 108346 (2020).

    Google Scholar 

  • Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed 

    Google Scholar 

  • Crees, J. J., Turvey, S. T., Freeman, R. & Carbone, C. Mammalian tolerance to humans is predicted by body mass: Evidence from long-term archives. Ecology 100, e02783 (2019).

    PubMed 

    Google Scholar 

  • Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Google Scholar 

  • Dı́az, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Google Scholar 

  • Mlambo, M. C. Not all traits are ‘functional’: Insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers. Conserv. 23, 781–790 (2014).

    Google Scholar 

  • van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed 

    Google Scholar 

  • Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  • Luck, G. W., Lavorel, S., McIntyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076 (2012).

    PubMed 

    Google Scholar 

  • Mouchet, M. et al. Towards a consensus for calculating dendrogram-based functional diversity indices. Oikos 117, 794–800 (2008).

    Google Scholar 

  • Podani, J. & Schmera, D. On dendrogram-based measures of functional diversity. Oikos 115, 179–185 (2006).

    Google Scholar 

  • Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).

    Google Scholar 

  • Villéger, S., Maire, E. & Leprieur, F. On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecol. Lett. 20, 554–557 (2017).

    PubMed 

    Google Scholar 

  • Tsirogiannis, C. & Sandel, B. PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).

    Google Scholar 

  • Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 

    Google Scholar 

  • Hidasi-Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: Identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).

    Google Scholar 

  • Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. The relative contributions of functional diversity and functional identity to ecosystem function in water-limited environments. J. Veg. Sci. 30, 427–437 (2019).

    Google Scholar 

  • Funk, J. L. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    PubMed 

    Google Scholar 

  • Kuebbing, S. E. & Bradford, M. A. The potential for mass ratio and trait divergence effects to explain idiosyncratic impacts of non-native invasive plants on carbon mineralization of decomposing leaf litter. Funct. Ecol. 33, 1156–1171 (2019).

    Google Scholar 

  • Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).

    Google Scholar 

  • Byers, J. E. et al. Using ecosystem engineers to restore ecological systems. Trends Ecol. Evol. 21, 493–500 (2006).

    PubMed 

    Google Scholar 

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management: Selected Readings (eds. Samson, F. B. & Knopf, F. L.) 130–147 (Springer, 1996). https://doi.org/10.1007/978-1-4612-4018-1_14.

  • Macdonald, D. W. et al. Reintroducing the beaver (Castor fiber) to Scotland: A protocol for identifying and assessing suitable release sites. Anim. Conserv. 3, 125–133 (2000).

    Google Scholar 

  • Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M. & Getz, W. M. Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72, 909–916 (2003).

    Google Scholar 

  • Dupont, H., Mihoub, J.-B., Bobbé, S. & Sarrazin, F. Modelling carcass disposal practices: Implications for the management of an ecological service provided by vultures. J. Appl. Ecol. 49, 404–411 (2012).

    Google Scholar 

  • Moleon, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).

    Google Scholar 

  • Legras, G., Loiseau, N., Gaertner, J.-C., Poggiale, J.-C. & Gaertner-Mazouni, N. Assessing functional diversity: The influence of the number of the functional traits. Theor. Ecol. 13, 117–126 (2020).

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    PubMed 

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. 117, 7871–7878 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113, 838–846 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osborne, P. E. & Seddon, P. J. Selecting suitable habitats for reintroductions: Variation, change and the role of species distribution modelling. Reintrod. Biol. Integr. Sci. Manag. 1, 73–104 (2012).

    Google Scholar 

  • Lipsey, M. K., Child, M. F., Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Combining the fields of reintroduction biology and restoration ecology. Conserv. Biol. 21, 1387–1390 (2007).

    PubMed 

    Google Scholar 

  • Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).

    Google Scholar 

  • Sarrazin, F. & Barbault, R. Reintroduction: Challenges and lessons for basic ecology. Trends Ecol. Evol. (Amst.) 11, 474–478 (1996).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    Toward batteries that pack twice as much energy per pound