Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).
Google Scholar
Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142620 (2015).
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
Google Scholar
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).
Google Scholar
Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?. J. Veg. Sci. 27, 646–653 (2016).
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B Biol. Sci. 269, 1721–1727 (2002).
Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).
Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).
Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).
Google Scholar
Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
Laughlin, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17, 771–784 (2014).
Google Scholar
Laughlin, D. C., Strahan, R. T., Huffman, D. W. & Sánchez Meador, A. J. Using trait-based ecology to restore resilient ecosystems: Historical conditions and the future of montane forests in western North America. Restor. Ecol. 25, S135–S146 (2017).
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).
Google Scholar
Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4(104), 112 (2014).
Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
Google Scholar
Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B 283, 20160084 (2016).
Google Scholar
IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. (IUCN Species Survival Commission, 2013).
Bakker, E. S. & Svenning, J.-C. Trophic rewilding: Impact on ecosystems under global change. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170432 (2018).
Garrido, P. et al. Experimental rewilding enhances grassland functional composition and pollinator habitat use. J. Appl. Ecol. 56, 946–955 (2019).
Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).
Google Scholar
Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).
Google Scholar
Chauvenet, A. L. M., Canessa, S. & Ewen, J. G. Setting objectives and defining the success of reintroductions. In Reintroduction of Fish and Wildlife Populations 105–121 (University of California Press, 2016).
Ewen, J. G., Soorae, P. S. & Canessa, S. Reintroduction objectives, decisions and outcomes: Global perspectives from the herpetofauna. Anim. Conserv. 17, 74–81 (2014).
Kleiman, D. G., Price, M. R. S. & Beck, B. B. Criteria for reintroductions. In Creative Conservation: Interactive Management of Wild and Captive Animals (eds. Olney, P. J. S., Mace, G. M. & Feistner, A. T. C.) 287–303 (Springer Netherlands, 1994). https://doi.org/10.1007/978-94-011-0721-1_14.
Hunter, M. L. & Hutchinson, A. The virtues and shortcomings of parochialism: Conserving species that are locally rare, but globally common. Conserv. Biol. 8, 1163–1165 (1994).
Brichieri-Colombi, T. A. & Moehrenschlager, A. Alignment of threat, effort, and perceived success in North American conservation translocations. Conserv. Biol. 30, 1159–1172 (2016).
Google Scholar
Thévenin, C., Mouchet, M., Robert, A., Kerbiriou, C. & Sarrazin, F. Reintroductions of birds and mammals involve evolutionarily distinct species at the regional scale. PNAS https://doi.org/10.1073/pnas.1714599115 (2018).
Google Scholar
Seddon, P. J., Soorae, P. S. & Launay, F. Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51–58 (2005).
Thévenin, C., Morin, A., Kerbiriou, C., Sarrazin, F. & Robert, A. Heterogeneity in the allocation of reintroduction efforts among terrestrial mammals in Europe. Biol. Conserv. 241, 108346 (2020).
Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
Google Scholar
Crees, J. J., Turvey, S. T., Freeman, R. & Carbone, C. Mammalian tolerance to humans is predicted by body mass: Evidence from long-term archives. Ecology 100, e02783 (2019).
Google Scholar
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Dı́az, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Mlambo, M. C. Not all traits are ‘functional’: Insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers. Conserv. 23, 781–790 (2014).
van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
Google Scholar
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Luck, G. W., Lavorel, S., McIntyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076 (2012).
Google Scholar
Mouchet, M. et al. Towards a consensus for calculating dendrogram-based functional diversity indices. Oikos 117, 794–800 (2008).
Podani, J. & Schmera, D. On dendrogram-based measures of functional diversity. Oikos 115, 179–185 (2006).
Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
Villéger, S., Maire, E. & Leprieur, F. On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecol. Lett. 20, 554–557 (2017).
Google Scholar
Tsirogiannis, C. & Sandel, B. PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).
Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Hidasi-Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: Identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).
Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. The relative contributions of functional diversity and functional identity to ecosystem function in water-limited environments. J. Veg. Sci. 30, 427–437 (2019).
Funk, J. L. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).
Google Scholar
Kuebbing, S. E. & Bradford, M. A. The potential for mass ratio and trait divergence effects to explain idiosyncratic impacts of non-native invasive plants on carbon mineralization of decomposing leaf litter. Funct. Ecol. 33, 1156–1171 (2019).
Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).
Byers, J. E. et al. Using ecosystem engineers to restore ecological systems. Trends Ecol. Evol. 21, 493–500 (2006).
Google Scholar
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management: Selected Readings (eds. Samson, F. B. & Knopf, F. L.) 130–147 (Springer, 1996). https://doi.org/10.1007/978-1-4612-4018-1_14.
Macdonald, D. W. et al. Reintroducing the beaver (Castor fiber) to Scotland: A protocol for identifying and assessing suitable release sites. Anim. Conserv. 3, 125–133 (2000).
Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M. & Getz, W. M. Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72, 909–916 (2003).
Dupont, H., Mihoub, J.-B., Bobbé, S. & Sarrazin, F. Modelling carcass disposal practices: Implications for the management of an ecological service provided by vultures. J. Appl. Ecol. 49, 404–411 (2012).
Moleon, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
Legras, G., Loiseau, N., Gaertner, J.-C., Poggiale, J.-C. & Gaertner-Mazouni, N. Assessing functional diversity: The influence of the number of the functional traits. Theor. Ecol. 13, 117–126 (2020).
Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. 117, 7871–7878 (2020).
Google Scholar
Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113, 838–846 (2016).
Google Scholar
Osborne, P. E. & Seddon, P. J. Selecting suitable habitats for reintroductions: Variation, change and the role of species distribution modelling. Reintrod. Biol. Integr. Sci. Manag. 1, 73–104 (2012).
Lipsey, M. K., Child, M. F., Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Combining the fields of reintroduction biology and restoration ecology. Conserv. Biol. 21, 1387–1390 (2007).
Google Scholar
Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).
Google Scholar
Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).
Google Scholar
Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).
Sarrazin, F. & Barbault, R. Reintroduction: Challenges and lessons for basic ecology. Trends Ecol. Evol. (Amst.) 11, 474–478 (1996).
Google Scholar
Source: Ecology - nature.com