in

Fungal fruit body assemblages are tougher in harsh microclimates

  • 1.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 

    Google Scholar 

  • 2.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, 6304 (2016).

    Google Scholar 

  • 3.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).

    ADS 

    Google Scholar 

  • 4.

    Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 1–10 (2014).

    Google Scholar 

  • 5.

    Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).

    Google Scholar 

  • 6.

    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Scharenbroch, B. C. & Bockheim, J. G. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294, 219–233 (2007).

    CAS 

    Google Scholar 

  • 8.

    de Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    PubMed 

    Google Scholar 

  • 9.

    Kermavnar, J. et al. Effects of various cutting treatments and topographic factors on microclimatic conditions in Dinaric fir-beech forests. Agric. For. Meteorol. 295, 108186 (2020).

    ADS 

    Google Scholar 

  • 10.

    Brown, M. J., Parker, G. G. & Posner, N. E. A survey of ultraviolet-B radiation in forests. J. Ecol. 82, 843 (1994).

    Google Scholar 

  • 11.

    Thom, D. et al. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 291, 108066 (2020).

    ADS 

    Google Scholar 

  • 12.

    Frank, A. et al. Risk of genetic maladaptation due to climate change in three major European tree species. Glob. Change Biol. 23, 5358–5371 (2017).

    ADS 

    Google Scholar 

  • 13.

    Maxime, C. & Hendrik, D. Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25, 265–276 (2011).

    Google Scholar 

  • 14.

    Vitasse, Y. et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781–3792 (2019).

    ADS 

    Google Scholar 

  • 15.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Penone, C. et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol. Lett. 22, 170–180 (2019).

    PubMed 

    Google Scholar 

  • 17.

    Müller, J. et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129, 1579–1588 (2020).

    Google Scholar 

  • 18.

    Krah, F.-S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442 (2018).

    Google Scholar 

  • 19.

    Nagy, L. G. et al. Six key traits of fungi: Their evolutionary origins and genetic bases. Microbiol. Spect. 5, 4 (2017).

    Google Scholar 

  • 20.

    Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Raudaskoski, M. & Salonen, M. Interrelationships between vegetative development and basidiocarp initiation. in The Ecology and Physiology of the Fungal Mycelium: Symposium of the British Mycological Society, vol. 8, p. 291 (Cambridge University Press, 1984).

  • 22.

    Kües, U. & Liu, Y. Fruiting body production in Basidiomycetes. Appl. Microbiol. Biotechnol. 54, 141–152 (2000).

    PubMed 

    Google Scholar 

  • 23.

    Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248 (2018).

    Google Scholar 

  • 24.

    Luo, L., Zhang, S., Wu, J., Sun, X. & Ma, A. Heat stress in macrofungi: Effects and response mechanisms. Appl. Microbiol. Biotechnol. 1, 1–10 (2021).

    Google Scholar 

  • 25.

    Krah, F., Hess, J., Hennicke, F., Kar, R. & Bässler, C. Transcriptional response of mushrooms to artificial sun exposure. Ecol. Evol. 11, 10538–10546 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Krah, F.-S. et al. European mushroom assemblages are darker in cold climates. Nat. Commun. 10, 2890 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Bässler, C. et al. Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species. Ecol. Lett. https://doi.org/10.1111/ele.13678 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Bässler, C. et al. Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecol. Evol. 6, 582–592 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. 105, 1070–1081 (2016).

    Google Scholar 

  • 30.

    Sánchez-García, M. et al. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc. Natl. Acad. Sci. 117, 32528–32534 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Hibbett, D. S. & Binder, M. Evolution of complex fruiting–body morphologies in homobasidiomycetes. Proc. R. Soc. Lond. B 269, 1963–1969 (2002).

    CAS 

    Google Scholar 

  • 32.

    Hibbett, D. S., Pine, E. M., Langer, E., Langer, G. & Donoghue, M. J. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. 94, 12002–12006 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Halbwachs, H., Simmel, J. & Bässler, C. Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30, 36–61 (2016).

    Google Scholar 

  • 34.

    Wilson, A. W., Binder, M. & Hibbett, D. S. Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evol. Int. J. Org. Evol. 65, 1305–1322 (2011).

    Google Scholar 

  • 35.

    Cordero, R. J. B. & Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 31, 99–112 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Zamora-Camacho, F. J., Reguera, S. & Moreno-Rueda, G. Bergmann’s Rule rules body size in an ectotherm: Heat conservation in a lizard along a 2200-metre elevational gradient. J. Evol. Biol. 27, 2820–2828 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Kalmus, H. Physiology and ecology of cuticle colour in insects. Nature 148, 693 (1941).

    ADS 

    Google Scholar 

  • 38.

    Law, S. J. et al. Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).

    PubMed 

    Google Scholar 

  • 39.

    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, 2015).

  • 41.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • 42.

    Olou, B. A., Yorou, N. S., Striegel, M., Bässler, C. & Krah, F.-S. Effects of macroclimate and resource on the diversity of tropical wood-inhabiting fungi. For. Ecol. Manage. 436, 79–87 (2019).

    Google Scholar 

  • 43.

    Moser, M. Fungal growth and fructification under stress conditions. Ukrainian Bot. J. 50, 5–11 (1993).

    Google Scholar 

  • 44.

    Walter, H. et al. Vegetation of the Earth in Relation to Climate and the Eco-Physiological Conditions (English Universities Press, 1973).

    Google Scholar 

  • 45.

    Botti, D. A phytoclimatic map of Europe. Cybergeo Eur. J. Geogr. https://doi.org/10.4000/cybergeo.29495 (2018).

    Article 

    Google Scholar 

  • 46.

    Sofo, A., Manfreda, S., Fiorentino, M., Dichio, B. & Xiloyannis, C. The olive tree: A paradigm for drought tolerance in Mediterranean climates. Hydrol. Earth Syst. Sci. 12, 293–301 (2008).

    ADS 

    Google Scholar 

  • 47.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588 (2009).

    PubMed 

    Google Scholar 

  • 48.

    Ellenberg, H. H. Spring areas and adjacent swamps. in Vegetation ecology of central Europe 313–313 (Cambridge University Press, 1988).

  • 49.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. New Phytol. 26, 285–291 (2011).

    Google Scholar 

  • 50.

    Stamets, P. Growing Gourmet and Medicinal Mushrooms (Ten Speed Press, 2011).

    Google Scholar 

  • 51.

    Cordero, R. J. B. et al. Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr. Biol. 28, 2657-2664.e3 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Graham, J. H. et al. Species richness, equitability, and abundance of ants in disturbed landscapes. Ecol. Ind. 9, 866–877 (2009).

    Google Scholar 

  • 53.

    Palladini, J. D., Jones, M. G., Sanders, N. J. & Jules, E. S. The recovery of ant communities in regenerating temperate conifer forests. For. Ecol. Manage. 242, 619–624 (2007).

    Google Scholar 

  • 54.

    Punttila, P., Haila, Y., Niemelä, J. & Pajunen, T. Ant communities in fragments of old-growth taiga and managed surroundings. Ann. Zool. Fenn. 31, 131–144 (1994).

    Google Scholar 

  • 55.

    Entling, W., Schmidt-Entling, M. H., Bacher, S., Brandl, R. & Nentwig, W. Body size–climate relationships of European spiders. J. Biogeogr. 37, 477–485 (2010).

    Google Scholar 

  • 56.

    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).

    Google Scholar 

  • 57.

    Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R. & Melbourne, B. A. Differentiating between niche and neutral assembly in metacommunities using null models of beta-diversity. Oikos 125, 778–789 (2015).

    Google Scholar 

  • 58.

    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 59.

    Krah, F.-S. & Bässler, C. What can intraspecific trait variability tell us about fungal communities and adaptations?. Mycol. Prog. 20, 905–910 (2021).

    Google Scholar 

  • 60.

    Norros, V. & Halme, P. Growth sites of polypores from quantitative expert evaluation: Late-stage decayers and saprotrophs fruit closer to ground. Fungal Ecol. 28, 53–65 (2017).

    Google Scholar 

  • 61.

    Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Bässler, C., Seifert, L. & Müller, J. The BIOKLIM project in the National Park Bavarian Forest: Lessons from a biodiversity survey. Silva Gabreta 21, 81–93 (2015).

    Google Scholar 

  • 63.

    Halme, P. & Kotiaho, J. S. The importance of timing and number of surveys in fungal biodiversity research. Biodivers. Conserv. 21, 205–219 (2012).

    Google Scholar 

  • 64.

    Crous, P. W. et al. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 50, 19–22 (2004).

    Google Scholar 

  • 65.

    van den Broek, E. L. & van Rikxoort, E. M. Evaluation of color representation for texture analysis. in Paper presented at 16th Belgium-Dutch Conference on Artificial Intelligence, BNAIC 2004, Groningen, Netherlands 35–42 (2004).

  • 66.

    Bernicchia, A. Fungi Europaei, Volume 10. Polyporaceae sl. (Alassio, Italia: Edizioni Candusso, 2005).

  • 67.

    Kembel, S. Community Phylogenetic Analysis with Picante Installing Picante 1–18 (Springer, 2009).

    Google Scholar 

  • 68.

    Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Springer, 1996).

    Google Scholar 

  • 69.

    Hochberg, Y. & Tamhane, A. C. Multiple Comparison Procedures (Wiley, 1987).

    MATH 

    Google Scholar 

  • 70.

    Dormann, C. G., Elith, J., Bacher, S., Buchmann, C. & Lautenback, S. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 35, 001–020 (2012).

    Google Scholar 

  • 71.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 72.

    Purhonen, J. et al. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46, 100863 (2020).

    Google Scholar 

  • 73.

    Heilmann-Clausen, J. & Christensen, M. Does size matter?: On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For. Ecol. Manage. 201, 105–117 (2004).

    Google Scholar 

  • 74.

    Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition