in

Fungal succession on the decomposition of three plant species from a Brazilian mangrove

  • Raghukumar, S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast. Ocean. Mar. Ecosyst. Mar. Fungi. https://doi.org/10.1007/978-3-319-54304-8 (2017).

    Article 

    Google Scholar 

  • Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).

    CAS 
    Article 

    Google Scholar 

  • Sebastianes, F. L. D. S. et al. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59, 153–166 (2013).

    CAS 
    Article 

    Google Scholar 

  • Holguin, G. et al. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 363, 260–274 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schaeffer-Novelli, Y., Cintrón-Molero, G. & Adaime, R. R. Variability of Mangrove ecosystems along the Brazilian coast variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13, 204–218 (1990).

    Article 

    Google Scholar 

  • Baskaran, R., Mohan, P., Sivakumar, K., Ragavan, P. & Sachithanandam, V. Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int. J. Microbiol. Res. 3, 124–127 (2012).

    Google Scholar 

  • Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32 (1994).

    CAS 
    Article 

    Google Scholar 

  • Taketani, R. G., Moitinho, M. A., Mauchline, T. H. & Melo, I. S. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ 6, e5710 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schmit, J. P. & Mueller, G. M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 16, 99–111 (2007).

    Article 

    Google Scholar 

  • Hawksworth, D. L. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 50, 9–18 (2004).

    Google Scholar 

  • Valderrama, B. et al. Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico. Revista Mexicana de Biodiversidad 87, 18–28 (2016).

    Article 

    Google Scholar 

  • Marano, A. V., Pires-Zottarelli, C. L. A., Barrera, M. D., Steciow, M. M. & Gleason, F. H. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. Hydrobiologia 659, 93–109 (2011).

    Article 

    Google Scholar 

  • Pascoal, C. & Cassio, F. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266–5273 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moitinho, M. A., Bononi, L., Souza, D. T., Melo, I. S. & Taketani, R. G. Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb. Ecol. https://doi.org/10.1007/s00248-018-1190-4 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tan, T. K., Leong, W. F. & Jones, E. B. G. Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can. J. Bot. 67, 2686–2691 (1989).

    Article 

    Google Scholar 

  • Ananda, K. & Sridhar, K. R. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. 80, 1431–1437 (2004).

    Google Scholar 

  • Maria, G. L., Sridhar, K. R. & Bärlocher, F. Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot. Mar. 49, 450–455 (2006).

    CAS 
    Article 

    Google Scholar 

  • Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycprrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. et al.) 315–322 (Academic Press, 1990).

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mcmurdie, P. J. & Holmes, S. phyloseq : An R package for reproducible interactive analysis and graphics of microbiome census data. 8, (2013).

  • Oksanen, P. Vegan 1.17-0. (2010).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • Hamilton, N. E. & Ferry, M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat. Softw. Code Snippets 87, 1–17 (2018).

    Google Scholar 

  • Hanski, I. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici 65–73 (1982).

  • Gumiere, T. et al. A probabilistic model to identify the core microbial community. bioRxiv. https://doi.org/10.1101/491183 (2018).

    Article 

    Google Scholar 

  • Salazar, G. EcolUtils: Utilities for community ecology analysis. (2019).

  • Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).

    Book 

    Google Scholar 

  • Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • Promputtha, I. et al. Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Diversity 30, 23–36 (2008).

    Google Scholar 

  • Kodsueb, R., McKenzie, E. H. C., Lumyong, S. & Hyde, K. D. Fungal succession on woody litter of Magnolia liliifera (Magnoliaceae). Fungal Diversity 30, 55–72 (2008).

    Google Scholar 

  • Voriskova, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Osono, T. Phyllosphere fungi on leaf litter of Fagus crenata: Occurrence, colonization, and succession. Can. J. Bot. 80, 460–469 (2002).

    Article 

    Google Scholar 

  • Osono, T. et al. Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Diversity 36, 101–119 (2009).

    Google Scholar 

  • Costa, I. P. M. W., Maia, L. C. & Cavalcanti, M. A. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 43, 1165–1173 (2012).

    Article 

    Google Scholar 

  • Sobrado, M. A. Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. 422–427 (2004). https://doi.org/10.1007/s00468-004-0320-4.

  • Dias, A. C. F. et al. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests. Braz. J. Microbiol. 43, (2012).

  • Moitinho, M. A. et al. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Braz. J. Microbiol. 50, 1041–1050 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barroso-Matos, T., Bernini, E. & Rezende, C. E. Descomposición de hojas de mangle en el estuario del Río Paraíba do Sul Rio de Janeiro, Brasil. Lat. Am. J. Aquat. Res. 40, 398–407 (2012).

    Article 

    Google Scholar 

  • Sessegolo, G. C. & Lana, P. C. Lagunculana racemosa Leaves in a Mangrove of Paranaguä Bay (Southeastern Brazil). Bot. Mar. 34, 285–289 (1991).

    Article 

    Google Scholar 

  • Miura, T. et al. Diversity of fungi on decomposing leaf litter in a sugarcane plantation and their response to tillage practice and bagasse mulching: implications for management effects on litter decomposition. Microb. Ecol. 70, 646–658 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Behnke-Borowczyk, J. & Wołowska, D. The identification of fungal species in dead wood of oak. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 17, 17–23 (2018).

    Article 

    Google Scholar 

  • Simões, M. F. et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320 (2015).

    Article 

    Google Scholar 

  • Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 22, 955–974 (2007).

    Article 

    Google Scholar 

  • Zhang, W. et al. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. CATENA 161, 85–95 (2018).

    CAS 
    Article 

    Google Scholar 

  • Jones, E. B. G. & Choeyklin, R. Ecology of marine and freshwater basidiomycetes. in Ecology of Saprotrophic Basidiomycetes 301–324 (2007).

  • Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6, 1749–1762 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, X. et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Biores. Technol. 170, 183–195 (2014).

    CAS 
    Article 

    Google Scholar 

  • Koivusaari, P. et al. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Front. Microbiol. 10, (2019).

  • Raudabaugh, D. B. et al. Coniella lustricola, a new species from submerged detritus. Mycol. Prog. 17, 191–203 (2018).

    Article 

    Google Scholar 

  • Arfi, Y. et al. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp. Nat. Commun. 4, (2013).


  • Source: Ecology - nature.com

    Designing zeolites, porous materials made to trap molecules

    These neurons have food on the brain