in

Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Google Scholar 

  • Myneni, R. B. et al. A large carbon sink in the woody biomass of northern forests. Proc. Natl Acad. Sci. USA 98, 14784–14789 (2001).

    CAS 

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Google Scholar 

  • Kauppi, P. E. et al. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9, e111340 (2014).

    Google Scholar 

  • Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS 

    Google Scholar 

  • Piao, S. L. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Google Scholar 

  • IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Penuelas, J. et al. Shifting from a fertilization-dominated to warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Google Scholar 

  • D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change 60, 289–305 (2008).

    Google Scholar 

  • Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).

    Google Scholar 

  • Vickers, H. et al. Changes in greening in the High Arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. 11, 105004 (2016).

    Google Scholar 

  • Piao, S. L. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).

    CAS 

    Google Scholar 

  • Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).

    CAS 

    Google Scholar 

  • Liu, Y. W. et al. Seasonal responses of terrestrial carbon cycle to climate variations in CMIP5 models: evaluation and projection. J. Clim. 30, 6481–6503 (2017).

    Google Scholar 

  • Huang, M. T. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Google Scholar 

  • Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).

    Google Scholar 

  • Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).

    CAS 

    Google Scholar 

  • Piao, S. L., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 3, GB3018 (2007).

    Google Scholar 

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    CAS 

    Google Scholar 

  • Xia, J. Y. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).

    CAS 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  • Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    CAS 

    Google Scholar 

  • Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).

    CAS 

    Google Scholar 

  • Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31, 491–543 (1980).

    Google Scholar 

  • Chen, A., Huang, L., Liu, Q. & Piao, S. L. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Change Biol. 27, 1942–1951 (2021).

    Google Scholar 

  • Smith, N. G., Lombardozzi, D., Tawfik, A., Bonan, G. & Dukes, J. S. Biophysical consequences of photosynthetic temperature acclimation for climate. J. Adv. Model. Earth Syst. 9, 536–547 (2017).

    Google Scholar 

  • Chen, M. & Zhuang, Q. L. Modelling temperature acclimation effects on the carbon dynamics of forest ecosystems in the conterminous United States. Tellus B 65, 19156 (2013).

    Google Scholar 

  • Crous, K. Y. Plant responses to climate warming: physiological adjustments and implications for plant functioning in a future, warmer world. Botany 106, 1049–1051 (2019).

    Google Scholar 

  • Conley, M. M. et al. CO2 enrichment increases water-use efficiency in sorghum. New Phytol. 151, 407–412 (2001).

    Google Scholar 

  • Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Google Scholar 

  • Huang, M. T. et al. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Change Biol. 21, 2366–2378 (2015).

    Google Scholar 

  • Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 7, 3336–3349 (2021).

    Google Scholar 

  • Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    CAS 

    Google Scholar 

  • Lemordant, L. et al. Modification of land–atmosphere interactions by CO2 effects: implications for summer dryness and heat wave amplitude. Geophys. Res. Lett. 43, 10240–10248 (2016).

    CAS 

    Google Scholar 

  • Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Google Scholar 

  • Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 4, 232–250 (2021).

    Google Scholar 

  • Druel, A., Ciais, P., Krinner, G. & Peylin, P. Modeling the vegetation dynamics of northern shrubs and mosses in the ORCHIDEE land surface model. J. Adv. Model. Earth Syst. 11, 2020–2035 (2019).

    Google Scholar 

  • Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    Google Scholar 

  • Mod, H. K. & Luoto, M. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation. Environ. Res. Lett. 12, 124028 (2016).

    Google Scholar 

  • Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).

    CAS 

    Google Scholar 

  • Bauerle, W. L. et al. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc. Natl Acad. Sci. USA 109, 8612–8617 (2012).

    CAS 

    Google Scholar 

  • Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).

    CAS 

    Google Scholar 

  • Fritz, M. et al. Brief communication: future avenues for permafrost science from the perspective of early career researchers. Cryosphere 9, 1715–1720 (2015).

    Google Scholar 

  • Jin, X. Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Change Res. 12, 29–47 (2021).

    Google Scholar 

  • Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).

    CAS 

    Google Scholar 

  • Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    CAS 

    Google Scholar 

  • Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 7 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks