in

Gapless genome assembly of East Asian finless porpoise

  • Gao, A. L. & Zhou, K. Y. Growth and reproduction of three populations of finless porpoise, Neophocaena phocaenoides, in Chinese waters. Aquat Mamm 19, 3–12 (1993).

    Google Scholar 

  • Jefferson, T. A. Preliminary analysis of geographic variation in cranial morphometrics of the finless porpoise (Neophocaena phocaenoides). Raffles Bull Zool 10, 3–14 (2002).

    Google Scholar 

  • Pilleri, G. & Gihr, M. Contribution to the knowledge of the cetaceans of Pakistan with particular reference to the genera Neomeris, Sousa, Delphinus and Tursiops and description of a new Chinese porpoise (Neomeris asiaeorientalis). Investig Cetacea 4, 107–162 (1972).

    Google Scholar 

  • Pilleri, G. & Gihr, M. On the taxonomy and ecology of the finless black porpoise, Neophocaena (Cetacea, Delphinidae). Mammalia 39, 657–673 (1975).

    Article 

    Google Scholar 

  • Wang, P. L. The morphological characters and the problem of subspecies identifications of the finless porpoise. Fish Sci 11, 4–8 (1992).

    Google Scholar 

  • Wang, P. L. On the taxonomy of the finless porpoise in China. Fish Sci 6, 10–14 (1992).

    Google Scholar 

  • Gao, A. L. & Zhou, K. Y. Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriol Sin 15, 81–92 (1995).

    Google Scholar 

  • Wang, J. Y., Frasier, T. R., Yang, S. C. & White, B. N. Detecting recent speciation events: the case of the finless porpoise (genus Neophocaena). Heredity 101, 145–155 (2008).

    Article 

    Google Scholar 

  • Jefferson, T. A. & Wang, J. Y. Revision of the taxonomy of finless porpoises (genus Neophocaena): the existence of two species. J Mar Anim Ecol 4, 3–16 (2011).

    Google Scholar 

  • Zhou, X. M. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun 9, 1276 (2018).

    Article 
    ADS 

    Google Scholar 

  • Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/43205774/45893487 (2013).

  • Wang, J. Y. & Reeves, R. Neophocaena Asiaeorientalis. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/41754/50381766 (2017).

  • Kasuya, T. Japanese whaling and other cetacean fisheries. Environ Sci Pollut Res Int 14, 39–48 (2007).

    Article 

    Google Scholar 

  • Yoshida, H., Shirakihara, K., Kishino, H. & Shirakihara, M. A population size estimate of the finless porpoise, Neophocaena phocaenoides, from aerial sighting surveys in Ariake Sound and Tachibana Bay, Japan. Popul Ecol 39, 239–247 (1997).

    Article 

    Google Scholar 

  • Amano, M., Nakahara, F., Hayano, A. & Shirakihara, K. Abundance estimate of finless porpoises off the Pacific coast of eastern Japan based on aerial surveys. Mamm Study 28, 103–110 (2003).

    Article 

    Google Scholar 

  • Shirakihara, K., Shirakihara, M. & Yamamoto, Y. Distribution and abundance of finless porpoise in the Inland Sea of Japan. Mar Biol 150, 1025–1032 (2007).

    Article 

    Google Scholar 

  • Zuo, T., Sun, J. Q., Shi, Y. Q. & Wang, J. Primary survey of finless porpoise population in the Bohai Sea. Acta Theriol Sin 38, 551–561 (2018).

    Google Scholar 

  • Ruan, R., Guo, A. H., Hao, Y. J., Zheng, J. S. & Wang, D. De novo assembly and characterization of narrow-ridged finless porpoise renal transcriptome and identification of candidate genes involved in osmoregulation. Int J Mol Sci 16, 2220–2238 (2015).

    Article 

    Google Scholar 

  • Li, S. H. et al. Echolocation click sounds from wild inshore finless porpoise (Neophocaena phocaenoides sunameri) with comparisons to the sonar of riverine N. p. asiaeorientalis. J Acoust Soc Am 121, 3938–3946 (2007).

    Article 
    ADS 

    Google Scholar 

  • Dong, J. H., Wang, G. J. & Xiao, Z. Z. Migration and population difference of the finless porpoise in China. Mar Sci 5, 42–45 (1993).

    Google Scholar 

  • Lu, Z. C. et al. Analysis of the diet of finless porpoise (Neophocaena asiaeorientalis sunameri) based on prey morphological characters and DNA barcoding. Conserv Genet Resour 8, 523–531 (2016).

    Article 

    Google Scholar 

  • Chen, B. et al. Finless porpoises (Neophocaena asiaeorientalis) in the East China Sea: insights into feeding habits using morphological, molecular, and stable isotopic techniques. Can J Fish Aquat Sci 74, 1628–1645 (2017).

    Article 

    Google Scholar 

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    ADS 

    Google Scholar 

  • Chen, Y. X. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).

    Article 
    ADS 

    Google Scholar 

  • Chikhi, R. & Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 30, 31–37 (2014).

    Article 

    Google Scholar 

  • Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10, 563–569 (2013).

    Article 

    Google Scholar 

  • Cheng, H. Y., Concepcion, G. T., Feng, X. W., Zhang, H. W. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021).

    Article 

    Google Scholar 

  • Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19, 1–10 (2018).

    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 

    Google Scholar 

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3, 95–98 (2016).

    Article 

    Google Scholar 

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article 
    ADS 

    Google Scholar 

  • Xiong, Y., Brandley, M. C., Xu, S. X., Zhou, K. Y. & Yang, G. Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9, 1–13 (2009).

    Article 

    Google Scholar 

  • Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 20, 1–17 (2019).

    Article 

    Google Scholar 

  • Mayer, A., Lahr, G., Swaab, D. F., Pilgrim, C. & Reisert, I. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics 1, 281–288 (1998).

    Article 

    Google Scholar 

  • Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article 
    ADS 

    Google Scholar 

  • Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article 
    ADS 

    Google Scholar 

  • Salo, P. et al. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome. Genes Chromosomes Cancer 14, 210–214 (1995).

    Article 

    Google Scholar 

  • Tsuchiya, K., Reijo, R., Page, D. C. & Disteche, C. M. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome. Am J Hum Genet 57, 1400–1407 (1995).

    Google Scholar 

  • Gegenschatz-Schmid, K., Verkauskas, G., Stadler, M. B. & Hadziselimovic, F. Genes located in Y-chromosomal regions important for male fertility show altered transcript levels in cryptorchidism and respond to curative hormone treatment. Basic Clin Androl 29, 1–8 (2019).

    Article 

    Google Scholar 

  • Chen, N. Using Repeat Masker to identify repetitive elements in genomic sequences. Curr protoc Bioinf 5, 4–10 (2004).

    Article 

    Google Scholar 

  • Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268 (2007).

    Article 

    Google Scholar 

  • Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    Article 

    Google Scholar 

  • Bao, W. D., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 1–6 (2015).

    Article 

    Google Scholar 

  • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580 (1999).

    Article 

    Google Scholar 

  • Liu, W. et al. Blood Transcriptome Analysis Reveals Gene Expression Differences between Yangtze Finless Porpoises from Two Habitats: Natural and Ex Situ Protected Waters. Fishes 7, 96 (2022).

    Article 

    Google Scholar 

  • Yin, D. H. et al. Integrated analysis of blood mRNAs and microRNAs reveals immune changes with age in the Yangtze finless porpoise (Neophocaena asiaeorientalis). Comp Biochem Physiol B Biochem Mol Biol 256, 110635 (2021).

    Article 

    Google Scholar 

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915 (2019).

    Article 

    Google Scholar 

  • Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20, 1–13 (2019).

    Article 

    Google Scholar 

  • Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    Article 

    Google Scholar 

  • Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 10, 112–122 (2015).

    Article 

    Google Scholar 

  • Yim, H. S. et al. Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46, 88–92 (2014).

    Article 

    Google Scholar 

  • Jones, S. J. et al. The genome of the beluga whale (Delphinapterus leucas). Genes 8, 378 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zhou, X. M. et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun 4, 1–6 (2013).

    Article 
    ADS 

    Google Scholar 

  • Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat Genet 47, 272–275 (2015).

    Article 

    Google Scholar 

  • Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol Biol 1962, 161–177 (2019).

    Article 

    Google Scholar 

  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).

    Article 

    Google Scholar 

  • Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28, 45–48 (2000).

    Article 

    Google Scholar 

  • Korf, I. Gene finding in novel genomes. BMC bioinformatics 5, 1–9 (2004).

    Article 

    Google Scholar 

  • Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190–D199 (2017).

    Article 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).

    Article 

    Google Scholar 

  • Mulder, N. J. & Apweiler, R. InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396, 59–70 (2007).

    Article 

    Google Scholar 

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000).

    Article 

    Google Scholar 

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR21047154 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20760935 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20760936 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997931 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997932 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997933 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997934 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR20997935 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP389529 (2022).

  • Yin, D. H. et al. Neophocaena asiaeorientalis sunameri isolate NAS202207, whole genome shotgun sequencing project. GenBank https://identifiers.org/insdc.gca:GCA_026225855.1 (2022).

  • Yin, D. H. et al. Gapless genome assembly of East Asian finless porpoise, Neophocaena asiaeorientalis sunameri. figshare https://doi.org/10.6084/m9.figshare.20381274.v2 (2022).

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 

    Google Scholar 

  • Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 14, e1005944 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Microparticles could help prevent vitamin A deficiency

    Energy, war, and the crisis in Ukraine