Assadi, A., Pirnalouti, A. G., Malekpoor, F., Teimori, N. & Assadi, L. Impact of air pollution on physiological and morphological characteristics of Eucalyptus camaldulensis Den. J. Food Agric. Environ. 9, 676–679 (2011).
Rai, R., Rajput, M., Agrawal, M. & Agrawal, S. B. Gaseous air pollutants: A review on current and future trends of emissions and impact on agriculture. J. Sci. Res. 55, 77–102 (2011).
Brooker, R. W. Plant-plant interactions and environmental change. New Phytol. 171, 271–284. https://doi.org/10.1111/j.1469-8137.2006.01752.x (2006).
Google Scholar
Jefferies, R. L. & Maron, J. L. The embarrassment of riches: Atmospheric deposition of nitrogen and community and ecosystem processes. Trends Ecol. Evol. 12, 74–78 (1997).
Google Scholar
Egerton-Warburton, L. M. & Allen, E. B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol. Appl. 10, 484–496 (2000).
Google Scholar
Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x (2007).
Google Scholar
Zvereva, E. L. & Kozlov, M. V. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: A metaanalysis. Glob. Change Biol. 12, 27–41. https://doi.org/10.1111/j.1365-2486.2005.01086.x (2006).
Google Scholar
Kopper, B. J. & Lindroth, R. L. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134, 95–103. https://doi.org/10.1007/s00442-002-1090-6 (2003).
Google Scholar
Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. Biol. Sci. 273, 2575–2584. https://doi.org/10.1098/rspb.2006.3587 (2006).
Google Scholar
Karban, R. & Baldwin, I. T. Induced Responses to Herbivory (University of Chicago Press, 2007).
Lambers, H. Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. Vegetation 104(105), 263–271 (1993).
Google Scholar
Poorter, H. et al. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20, 472–482 (1997).
Google Scholar
Thaler, J. S., Stout, M. J., Karban, R. & Duffey, S. S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22, 1767–1781 (1996).
Google Scholar
De Moraes, C. M. et al. Herbivore-infested plants selectively attract parasitoids. Nature 393(6685), 570–573 (1998).
Google Scholar
Thaler, J. S. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399, 686–688 (1999).
Google Scholar
Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511), 2141–2144 (2001).
Google Scholar
Orrock, J., Connolly, B. & Kitchen, A. Induced defences in plants reduce herbivory by increasing cannibalism. Nat. Ecol. Evol. 1, 1205–1207. https://doi.org/10.1038/s41559-017-0231-6 (2017).
Google Scholar
Blande, J. D., Holopainen, J. K. & Niinemets, Ü. Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ. 37, 1892–1904. https://doi.org/10.1111/pce.12352 (2014).
Google Scholar
Bidart-Bouzat, M. G. & Imeh-Nathaniel, A. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50, 1339–1354. https://doi.org/10.1111/j.1744-7909.2008.00751.x (2008).
Google Scholar
Tao, L., Berns, A. R., Hunter, M. D. & Johnson, M. Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct. Ecol. 28, 190–196. https://doi.org/10.1111/1365-2435.12163 (2014).
Google Scholar
Forieri, I., Hildebrandt, U. & Rostás, M. Salinity stress effects on direct and indirect defence in maize. Environ. Exp. Bot. 122, 68–77. https://doi.org/10.1016/j.envexpbot.2015.09.007 (2016).
Google Scholar
Maathuis, F. J. Sodium in plants: Perception, signaling, and regulation of sodium fluxes. J. Exp. Bot. 65, 849–858. https://doi.org/10.1093/jxb/ert326 (2014).
Google Scholar
Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57(5), 1017–1023 (2006).
Google Scholar
Harmon, J. P. & Daigh, A. L. M. Attempting to predict the plant-mediated trophic effects of soil salinity: A mechanistic approach to supplementing insufficient information. Food Webs 13, 67–77. https://doi.org/10.1016/j.fooweb.2017.02.002 (2017).
Google Scholar
Zribi, L. et al. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci. Hortic. 120, 367–372. https://doi.org/10.1016/j.scienta.2008.11.025 (2009).
Google Scholar
Farooq, M. et al. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. PPB 118, 199–217. https://doi.org/10.1016/j.plaphy.2017.06.020 (2017).
Google Scholar
Zhang, C. et al. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 16, 1659–1668. https://doi.org/10.1016/s2095-3119(16)61590-3 (2017).
Google Scholar
Dumbroff, E. B. & Cooper, A. W. Effects of salt stress applied in balanced nutrient solution at several stages during growth of tomato. Bot. Gazette 135, 219–224 (1974).
Google Scholar
Aucejo-Romero, S., Gómez-Cadenas, A. & Jacas-Miret, J.-A. Effects of NaCl-stressed citrus plants on life-history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 33, 55–67 (2004).
Google Scholar
Polack, L. A., Pereyra, P. C. & Sarandón, S. J. Effects of plant stress and habitat manipulation on aphid control in greenhouse sweet peppers. J. Sustain. Agric. 35, 699–725. https://doi.org/10.1080/10440046.2011.606489 (2011).
Google Scholar
Dombrowski, J. E. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132, 2098–2107. https://doi.org/10.1104/pp.102.019927 (2003).
Google Scholar
Younginger, B., Barnouti, J. & Moon, D. Interactive effects of mycorrhizal fungi, salt stress, and competition on the herbivores of Baccharis halimifolia. Ecol. Entomol. 34(5), 580–587 (2009).
Google Scholar
Orrock, J. L. et al. Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores. Oecologia 186, 703–710. https://doi.org/10.1007/s00442-018-4070-1 (2018).
Google Scholar
Rodriguez-Saona, C., Chalmers, J. A., Raj, S. & Thaler, J. S. Induced plant responses to multiple damagers: Differential effects on an herbivore and its parasitoid. Oecologia 143, 566–577. https://doi.org/10.1007/s00442-005-0006-7 (2005).
Google Scholar
Connolly, B. M., Guiden, P. W. & Orrock, J. L. Past freeze–thaw events on Pinus seeds increase seedling herbivory. Ecosphere 8, e01748. https://doi.org/10.1002/ecs2.1748 (2017).
Google Scholar
Ainsworth, E. A. & Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2, 875–877. https://doi.org/10.1038/nprot.2007.102 (2007).
Google Scholar
Connolly, B., Ripka, M., & Ebersole, W. Microclimate measurements (15-minute intervals) at Fish Lake Environmental Education Center (Eastern Michigan University; Lapeer County, Michigan, USA), Dryad, Dataset. https://doi.org/10.5061/dryad.3n5tb2rh4 (2021).
Edwards, P. J. & Wratten, S. D. Wound induced defenses in plants and their consequences for patterns of insect grazing. Oecologia 59, 88–93 (1983).
Google Scholar
R Core Team. R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/ (2019)
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Therneau, T. A package for survival analysis in R. R package version 3.2-11. https://CRAN.R-project.org/package=survival (2021)
Kassambara, A., Kosinski, M., & Biecek, P. survminer: Drawing survival curves using ‘ggplot2’. R package version 0.4.9. https://CRAN.R-project.org/package=survminer (2021)
Wickham, H., François, R., Henry, L., & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr (2021)
Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.2-1. https://CRAN.R-project.org/package=emmeans (2021)
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Katerji, N., van Hoorn, J. W., Hamdy, A. & Mastrorilli, M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 62, 37–66. https://doi.org/10.1016/s0378-3774(03)00005-2 (2003).
Google Scholar
Snell-Rood, E. C., Espeset, A., Boser, C. J., White, W. A. & Smykalski, R. Anthropogenic changes in sodium affect neural and muscle development in butterflies. Proc. Natl. Acad. Sci. U.S.A. 111, 10221–10226. https://doi.org/10.1073/pnas.1323607111 (2014).
Google Scholar
Negrão, S., Schmöckel, S. M. & Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1–11. https://doi.org/10.1093/aob/mcw191 (2017).
Google Scholar
Mogren, C. L. & Trumble, J. T. The impacts of metals and metalloids on insect behavior. Entomol. Exp. Appl. 135, 1–17. https://doi.org/10.1111/j.1570-7458.2010.00967.x (2010).
Google Scholar
Schultz, J. C. Habitat selection and foraging tactics of caterpillars in heterogeneous trees. In Variable Plants and Herbivores in Natural and Managed Systems (eds Denno, R. F. & McClure, M. S.) 61–90 (Academic Press Inc, 1983).
Google Scholar
Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).
Google Scholar
Elvira, S., Williams, T. & Caballero, P. Juvenile hormone analog technology: Effects on larval cannibalism and the production of Spodoptera exigua (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J. Econ. Entomol. 103, 577–582. https://doi.org/10.1603/ec09325 (2010).
Google Scholar
Elderd, B. D. Bottom-up trait-mediated indirect effects decrease pathogen transmission in a tritrophic system. Ecology 100, e02551 (2019).
Google Scholar
Mitchell, T. S., Shephard, A. M., Kalinowski, C. R., Kobiela, M. E. & Snell-Rood, E. C. Butterflies do not alter oviposition or larval foraging in response to anthropogenic increases in sodium. Anim. Behav. 154, 121–129. https://doi.org/10.1016/j.anbehav.2019.06.015 (2019).
Google Scholar
Beaton, L. L. & Dudley, S. A. Tolerance to salinity and manganese in three common roadside species. Int. J. Plant Sci. 165, 37–51 (2004).
Google Scholar
Kim, H. et al. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem. 54, 7263–7269 (2006).
Google Scholar
Inbar, M., Doostdar, H. & Mayer, R. T. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94, 228–235 (2001).
Google Scholar
English-Loeb, G., Stout, M. J. & Duffey, S. S. Drought stress in tomatoes: Changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79, 456–468 (1997).
Google Scholar
Welti, E. A. R. & Kaspari, M. Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct. Ecol. https://doi.org/10.1111/1365-2435.13796 (2021).
Google Scholar
Caparrotta, S. et al. Induction of priming by salt stress in neighboring plants. Environ. Exp. Bot. 147, 261–270. https://doi.org/10.1016/j.envexpbot.2017.12.017 (2018).
Google Scholar
Nedjimi, B. & Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol. Distrib. Funct. Ecol. Plants 204, 316–324. https://doi.org/10.1016/j.flora.2008.03.004 (2009).
Google Scholar
Methenni, K. et al. Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Sci. Hortic. 233, 349–358. https://doi.org/10.1016/j.scienta.2018.01.060 (2018).
Google Scholar
Song, Y. Y. et al. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 4, 3915. https://doi.org/10.1038/srep03915 (2014).
Google Scholar
Evelin, H., Kapoor, R. & Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 104, 1263–1280. https://doi.org/10.1093/aob/mcp251 (2009).
Google Scholar
Source: Ecology - nature.com