in

Generalist herbivore response to volatile chemical induction varies along a gradient in soil salinization

  • 1.

    Assadi, A., Pirnalouti, A. G., Malekpoor, F., Teimori, N. & Assadi, L. Impact of air pollution on physiological and morphological characteristics of Eucalyptus camaldulensis Den. J. Food Agric. Environ. 9, 676–679 (2011).

    Google Scholar 

  • 2.

    Rai, R., Rajput, M., Agrawal, M. & Agrawal, S. B. Gaseous air pollutants: A review on current and future trends of emissions and impact on agriculture. J. Sci. Res. 55, 77–102 (2011).

    Google Scholar 

  • 3.

    Brooker, R. W. Plant-plant interactions and environmental change. New Phytol. 171, 271–284. https://doi.org/10.1111/j.1469-8137.2006.01752.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Jefferies, R. L. & Maron, J. L. The embarrassment of riches: Atmospheric deposition of nitrogen and community and ecosystem processes. Trends Ecol. Evol. 12, 74–78 (1997).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Egerton-Warburton, L. M. & Allen, E. B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol. Appl. 10, 484–496 (2000).

    Article 

    Google Scholar 

  • 6.

    Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x (2007).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Zvereva, E. L. & Kozlov, M. V. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: A metaanalysis. Glob. Change Biol. 12, 27–41. https://doi.org/10.1111/j.1365-2486.2005.01086.x (2006).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Kopper, B. J. & Lindroth, R. L. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134, 95–103. https://doi.org/10.1007/s00442-002-1090-6 (2003).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. Biol. Sci. 273, 2575–2584. https://doi.org/10.1098/rspb.2006.3587 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Karban, R. & Baldwin, I. T. Induced Responses to Herbivory (University of Chicago Press, 2007).

    Google Scholar 

  • 11.

    Lambers, H. Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. Vegetation 104(105), 263–271 (1993).

    Article 

    Google Scholar 

  • 12.

    Poorter, H. et al. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20, 472–482 (1997).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Thaler, J. S., Stout, M. J., Karban, R. & Duffey, S. S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22, 1767–1781 (1996).

    CAS 
    Article 

    Google Scholar 

  • 14.

    De Moraes, C. M. et al. Herbivore-infested plants selectively attract parasitoids. Nature 393(6685), 570–573 (1998).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Thaler, J. S. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399, 686–688 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511), 2141–2144 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Orrock, J., Connolly, B. & Kitchen, A. Induced defences in plants reduce herbivory by increasing cannibalism. Nat. Ecol. Evol. 1, 1205–1207. https://doi.org/10.1038/s41559-017-0231-6 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Blande, J. D., Holopainen, J. K. & Niinemets, Ü. Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ. 37, 1892–1904. https://doi.org/10.1111/pce.12352 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Bidart-Bouzat, M. G. & Imeh-Nathaniel, A. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50, 1339–1354. https://doi.org/10.1111/j.1744-7909.2008.00751.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Tao, L., Berns, A. R., Hunter, M. D. & Johnson, M. Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct. Ecol. 28, 190–196. https://doi.org/10.1111/1365-2435.12163 (2014).

    Article 

    Google Scholar 

  • 21.

    Forieri, I., Hildebrandt, U. & Rostás, M. Salinity stress effects on direct and indirect defence in maize. Environ. Exp. Bot. 122, 68–77. https://doi.org/10.1016/j.envexpbot.2015.09.007 (2016).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Maathuis, F. J. Sodium in plants: Perception, signaling, and regulation of sodium fluxes. J. Exp. Bot. 65, 849–858. https://doi.org/10.1093/jxb/ert326 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57(5), 1017–1023 (2006).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Harmon, J. P. & Daigh, A. L. M. Attempting to predict the plant-mediated trophic effects of soil salinity: A mechanistic approach to supplementing insufficient information. Food Webs 13, 67–77. https://doi.org/10.1016/j.fooweb.2017.02.002 (2017).

    Article 

    Google Scholar 

  • 25.

    Zribi, L. et al. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci. Hortic. 120, 367–372. https://doi.org/10.1016/j.scienta.2008.11.025 (2009).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Farooq, M. et al. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. PPB 118, 199–217. https://doi.org/10.1016/j.plaphy.2017.06.020 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Zhang, C. et al. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 16, 1659–1668. https://doi.org/10.1016/s2095-3119(16)61590-3 (2017).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Dumbroff, E. B. & Cooper, A. W. Effects of salt stress applied in balanced nutrient solution at several stages during growth of tomato. Bot. Gazette 135, 219–224 (1974).

    Article 

    Google Scholar 

  • 29.

    Aucejo-Romero, S., Gómez-Cadenas, A. & Jacas-Miret, J.-A. Effects of NaCl-stressed citrus plants on life-history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 33, 55–67 (2004).

    Article 

    Google Scholar 

  • 30.

    Polack, L. A., Pereyra, P. C. & Sarandón, S. J. Effects of plant stress and habitat manipulation on aphid control in greenhouse sweet peppers. J. Sustain. Agric. 35, 699–725. https://doi.org/10.1080/10440046.2011.606489 (2011).

    Article 

    Google Scholar 

  • 31.

    Dombrowski, J. E. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132, 2098–2107. https://doi.org/10.1104/pp.102.019927 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Younginger, B., Barnouti, J. & Moon, D. Interactive effects of mycorrhizal fungi, salt stress, and competition on the herbivores of Baccharis halimifolia. Ecol. Entomol. 34(5), 580–587 (2009).

    Article 

    Google Scholar 

  • 33.

    Orrock, J. L. et al. Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores. Oecologia 186, 703–710. https://doi.org/10.1007/s00442-018-4070-1 (2018).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Rodriguez-Saona, C., Chalmers, J. A., Raj, S. & Thaler, J. S. Induced plant responses to multiple damagers: Differential effects on an herbivore and its parasitoid. Oecologia 143, 566–577. https://doi.org/10.1007/s00442-005-0006-7 (2005).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Connolly, B. M., Guiden, P. W. & Orrock, J. L. Past freeze–thaw events on Pinus seeds increase seedling herbivory. Ecosphere 8, e01748. https://doi.org/10.1002/ecs2.1748 (2017).

    Article 

    Google Scholar 

  • 36.

    Ainsworth, E. A. & Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2, 875–877. https://doi.org/10.1038/nprot.2007.102 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Connolly, B., Ripka, M., & Ebersole, W. Microclimate measurements (15-minute intervals) at Fish Lake Environmental Education Center (Eastern Michigan University; Lapeer County, Michigan, USA), Dryad, Dataset. https://doi.org/10.5061/dryad.3n5tb2rh4 (2021).

  • 38.

    Edwards, P. J. & Wratten, S. D. Wound induced defenses in plants and their consequences for patterns of insect grazing. Oecologia 59, 88–93 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    R Core Team. R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/ (2019)

  • 40.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 41.

    Therneau, T. A package for survival analysis in R. R package version 3.2-11. https://CRAN.R-project.org/package=survival (2021)

  • 42.

    Kassambara, A., Kosinski, M., & Biecek, P. survminer: Drawing survival curves using ‘ggplot2’. R package version 0.4.9. https://CRAN.R-project.org/package=survminer (2021)

  • 43.

    Wickham, H., François, R., Henry, L., & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr (2021)

  • 44.

    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.2-1. https://CRAN.R-project.org/package=emmeans (2021)

  • 45.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    Book 

    Google Scholar 

  • 46.

    Katerji, N., van Hoorn, J. W., Hamdy, A. & Mastrorilli, M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 62, 37–66. https://doi.org/10.1016/s0378-3774(03)00005-2 (2003).

    Article 

    Google Scholar 

  • 47.

    Snell-Rood, E. C., Espeset, A., Boser, C. J., White, W. A. & Smykalski, R. Anthropogenic changes in sodium affect neural and muscle development in butterflies. Proc. Natl. Acad. Sci. U.S.A. 111, 10221–10226. https://doi.org/10.1073/pnas.1323607111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Negrão, S., Schmöckel, S. M. & Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1–11. https://doi.org/10.1093/aob/mcw191 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Mogren, C. L. & Trumble, J. T. The impacts of metals and metalloids on insect behavior. Entomol. Exp. Appl. 135, 1–17. https://doi.org/10.1111/j.1570-7458.2010.00967.x (2010).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Schultz, J. C. Habitat selection and foraging tactics of caterpillars in heterogeneous trees. In Variable Plants and Herbivores in Natural and Managed Systems (eds Denno, R. F. & McClure, M. S.) 61–90 (Academic Press Inc, 1983).

    Chapter 

    Google Scholar 

  • 51.

    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Elvira, S., Williams, T. & Caballero, P. Juvenile hormone analog technology: Effects on larval cannibalism and the production of Spodoptera exigua (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J. Econ. Entomol. 103, 577–582. https://doi.org/10.1603/ec09325 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Elderd, B. D. Bottom-up trait-mediated indirect effects decrease pathogen transmission in a tritrophic system. Ecology 100, e02551 (2019).

    Article 

    Google Scholar 

  • 54.

    Mitchell, T. S., Shephard, A. M., Kalinowski, C. R., Kobiela, M. E. & Snell-Rood, E. C. Butterflies do not alter oviposition or larval foraging in response to anthropogenic increases in sodium. Anim. Behav. 154, 121–129. https://doi.org/10.1016/j.anbehav.2019.06.015 (2019).

    Article 

    Google Scholar 

  • 55.

    Beaton, L. L. & Dudley, S. A. Tolerance to salinity and manganese in three common roadside species. Int. J. Plant Sci. 165, 37–51 (2004).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Kim, H. et al. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem. 54, 7263–7269 (2006).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Inbar, M., Doostdar, H. & Mayer, R. T. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94, 228–235 (2001).

    Article 

    Google Scholar 

  • 58.

    English-Loeb, G., Stout, M. J. & Duffey, S. S. Drought stress in tomatoes: Changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79, 456–468 (1997).

    Article 

    Google Scholar 

  • 59.

    Welti, E. A. R. & Kaspari, M. Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct. Ecol. https://doi.org/10.1111/1365-2435.13796 (2021).

    Article 

    Google Scholar 

  • 60.

    Caparrotta, S. et al. Induction of priming by salt stress in neighboring plants. Environ. Exp. Bot. 147, 261–270. https://doi.org/10.1016/j.envexpbot.2017.12.017 (2018).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Nedjimi, B. & Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol. Distrib. Funct. Ecol. Plants 204, 316–324. https://doi.org/10.1016/j.flora.2008.03.004 (2009).

    Article 

    Google Scholar 

  • 62.

    Methenni, K. et al. Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Sci. Hortic. 233, 349–358. https://doi.org/10.1016/j.scienta.2018.01.060 (2018).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Song, Y. Y. et al. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 4, 3915. https://doi.org/10.1038/srep03915 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Evelin, H., Kapoor, R. & Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 104, 1263–1280. https://doi.org/10.1093/aob/mcp251 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing global online learners for the clean energy transition

    Energizing communities in Africa