in

Genetic identification and diversity of stocks of the African bonytongue, Heterotis niloticus (Osteoglossiformes: Arapaiminae), in Nigeria, West Africa

  • Béné, C. & Heck, S. Fish and food security in Africa. NAGA WorldFish Center Q. 28, 8–13 (2005).

    Google Scholar 

  • Funge-Smith, S. J. Review of the state of world fishery resources: inland fisheries. FAO Fisheries and Aquaculture Circular (2018).

  • Funge-Smith, S. & Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish. (Oxf.) 20, 1176–1195 (2019).

    Article 

    Google Scholar 

  • De Graaf, G. & Garibaldi, L. The value of African fisheries. FAO fisheries and aquaculture circular, I (2015).

  • FAO. FAO yearbook. Fishery and Aquaculture Statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/FAO anuario. Estadísticas de pesca y acuicultura 2018 (2020).

  • Olaosebikan, B. D. & Bankole, N. O. An analysis of Nigerian freshwater fishes: those under threat and conservation options, In Proceedings of the 19th annual conference of the fisheries society of Nigeria (FISON), 29 Nov – 03 Dec 2004. 754–762.

  • Marshall, B. E. Inland fisheries of tropical Africa. In Freshwater Fisheries Ecology (ed. Graig, J. F.) 349 (Wiley, Chichester, 2016).

    Google Scholar 

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. (Camb.) 81, 163–182 (2006).

    Article 

    Google Scholar 

  • United Nations-Department of Economic and Social Affairs-Population Division. World population prospects 2019: Highlights (st/esa/ser. A/423). (2019).

  • FAO, IFAD, UNICEF, WFP & WHO. The state of food security and nutrition in the world 2019: safeguarding against economic slowdowns and downturns 2019. (Rome, Italy: FAO, http://www.fao.org/3/ca5162en/ca5162en.pdf 2019).

  • Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer, Berlin, 1995).

    Chapter 

    Google Scholar 

  • Abban, E. K. Considerations for the conservation of African fish genetic resources for their sustainable exploitation. In Towards Policies for Conservation and Sustainable Use of Aquatic Genetic Resources. ICLARM Conf. Proc. 59, 277p. (eds R.S.V. Pullin, D.M. Bartley, & J. Kooiman) 95–100 (International Center for Living Aquatic Resources Management (ICLARM) and FAO).

  • FAO. Fishery Statistical Collections: Global Capture Production 1950–2018. http://www.fao.org/fishery/statistics/global-capture-production/query/en (2020).

  • Chan, C. Y. et al. Prospects and challenges of fish for food security in Africa. Glob. Food Sec. 20, 17–25 (2019).

    Article 

    Google Scholar 

  • Olopade, O. A., Taiwo, I. O. & Dienye, H. E. Management of Overfishing in the Inland Capture Fisheries in Nigeria. LimnoFish 3, 189–194 (2017).

    Article 

    Google Scholar 

  • Gbaguidi, A. S. & Pfeiffer, V. Stastistiques des peches continentals, Annees 1987–1995. Cotonou, Benin: GTZ-GmbH, Benin Direction des Pêches (1996).

  • Monentcham, S.-E., Kouam, J., Pouomogne, V. & Kestemont, P. Biology and prospect for aquaculture of African bonytongue, Heterotis niloticus (Cuvier, 1829): A review. Aquaculture 289, 191–198 (2009).

    Article 

    Google Scholar 

  • FAO. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. (Rome, 2019).

  • Mustapha, M. K. Heterotis niloticus (Cuvier, 1829) a threatened fish species in Oyun reservoir, Offa, Nigeria; the need for its conservation. Asian J. Exp. Biol. Sci. 1, 1–7 (2010).

    Google Scholar 

  • Hurtado, L. A., Carrera, E., Adite, A. & Winemiller, K. O. Genetic differentiation of a primitive teleost, the African bonytongue Heterotis niloticus, among river basins and within a floodplain river system in Benin, West Africa. J. Fish Biol. 83, 682–690 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hauber, M. E., Bierbach, D. & Linsenmair, K. E. A description of teleost fish diversity in floodplain pools (‘Whedos’) and the Middle-Niger at Malanville (north-eastern Benin). J. Appl. Ichthyol. 27, 1095–1099 (2011).

    Article 

    Google Scholar 

  • Carrera, E., Renshaw, M. A., Winemiller, K. O. & Hurtado, L. A. Isolation and characterization of nuclear-encoded microsatellite DNA primers for the African bonytongue, Heterotis niloticus. Conserv. Genet. Resour. 3, 537–539 (2011).

    Article 

    Google Scholar 

  • Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012).

    CAS 
    Article 

    Google Scholar 

  • Raymond, M. & Rousset, F. GENEPOP (version-1.2)—Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Article 

    Google Scholar 

  • Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    Article 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Article 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    Article 

    Google Scholar 

  • Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 

    Google Scholar 

  • Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).

    CAS 
    Article 

    Google Scholar 

  • Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    Article 

    Google Scholar 

  • Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    CAS 
    Article 

    Google Scholar 

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article 

    Google Scholar 

  • Miller, J. M., Cullingham, C. I. & Peery, R. M. The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity https://doi.org/10.1038/s41437-020-0348-2 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    Article 

    Google Scholar 

  • Mantel, N. The detection of disease clustering and a Generalized Regression Approach. Cancer Res. 27, 209–220 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • Allendorf, F. W., Ryman, N. & Utter, F. M. Genetics and fishery management: Past, present, and future. In Population Genetics and Fishery Management (eds Ryman, N. & Utter, F.) 1–19 (Washington Sea Grant Publications/University of Washington Press, 1987).

    Google Scholar 

  • Otobo, F. O. The commercial fishery of the middle River Niger, Nigeria. In Symposium on River and Floodplain Fisheries in Africa, Bujumbura, Burundi, 21–23 November 1977, Review and Experience Papers Vol. CIFA TECHNICAL PAPER No. 5 (ed R. L. Welcomme) (Committe for Inland Fisheries of Africa, FAO, 1978).

  • Lelek, A. & El-Zarka, A. Ecological comparison of the preimpoundment and postimpoundment fish faunas of the River Niger and Kainji Lake, Nigeria. Geophys. Monogr. Ser. 17, 655–660 (1973).

    ADS 

    Google Scholar 

  • Morin, P. A., Manaster, C., Mesnick, S. L. & Holland, R. Normalization and binning of historical and multi-source microsatellite data: Overcoming the problems of allele size shift with allelogram. Mol. Ecol. Resour. 9, 1451–1455 (2009).

    Article 

    Google Scholar 

  • Pruett, C. L. & Winker, K. The effects of sample size on population genetic diversity estimates in song sparrows Melospiza melodia. J. Avian Biol. 39, 252–256. https://doi.org/10.1111/j.2008.0908-8857.0409 (2008).

    Article 

    Google Scholar 

  • Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Macedo, D. et al. Population genetics and historical demographic inferences of the blue crab Callinectes sapidus in the US based on microsatellites. PeerJ 7, e7780 (2019).

    Article 

    Google Scholar 

  • Latch, E. K., Dharmarajan, G., Glaubitz, J. C. & Rhodes, O. E. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7, 295–302 (2006).

    Article 

    Google Scholar 

  • Lind, C. E. et al. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci. Rep. 9, 1–12 (2019).

    ADS 

    Google Scholar 

  • Araripe, J., do Rêgo, P. S., Queiroz, H., Sampaio, I. & Schneider, H. Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers. PLoS ONE 8, e54470 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hilton, E. J. & Lavoué, S. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei). Neotrop. Ichthyol. 16 (2018).

  • DeWoody, J. A. & Avise, J. C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biol. 56, 461–473 (2000).

    CAS 
    Article 

    Google Scholar 

  • Abiodun, J. A. Fisheries Statistical Bulletin Kainji Lake, Nigeria, 2001. 25p (2002).

  • Yem, I. Y., Sani, A. O., Bankole, N. O., Onimisi, H. U. & Musa, Y. M. Over fishing as a factor responsible for declined in fish species diversity of Kainji, Nigeria. In 21st Annual Conference of the Fisheries Society of Nigeria (FISON). 79–85.

  • Mshelia, M. B. et al. Responsible fisheries enhancing poverty alleviation of fishing communities of Lake Kainji. In 19th Annual Conference of the Fisheries Society of Nigeria (FISON) 597–604.

  • Adelakun, K. M. & Kehinde, A. S. Heavy metals bioaccumulations in Chrysichthys nigrodigitatus (Silver catfish) from River Oli, Kainji Lake National Park, Nigeria. Egypt. J. Aquat. Biol. Fish. 23, 253–259 (2019).

    Article 

    Google Scholar 

  • Ikomi, R. B. & Arimoro, F. O. Effects of recreational activities on the littoral macroinvertebrates of Ethiope River, Niger Delta, Nigeria. J. Aquat. Sci. 29, 155–170 (2014).

    Google Scholar 

  • Ushurhe, O., Origho, T. & Ewhuwhe-Ezo, J. Determinant of water quality and suitability of River Ethiope for fish survival in Southern Nigeria. Can. J. Agr. Crop. 1, 11–18 (2016).

    Google Scholar 

  • Arojojoye, O. A., Oyagbemi, A. A. & Afolabi, J. M. Toxicological assessment of heavy metal bioaccumulation and oxidative stress biomarkers in Clarias gariepinus from Igbokoda River of South Western Nigeria. Bull. Environ. Contam. Toxicol. 100, 765–771 (2018).

    CAS 
    Article 

    Google Scholar 

  • Arojojoye, O. A. et al. Assessment of water quality of selected rivers in the Niger Delta region of Nigeria using biomarkers in Clarias gariepinus. Environ. Sci. Pollut. Res. 28, 22936–22943 (2021).

    CAS 
    Article 

    Google Scholar 

  • Soyinka, O. O. & Ebigbo, C. H. Species diversity and growth pattern of the fish fauna of Epe Lagoon, Nigeria. J. Fish. Aquat. Sci. 7, 392–401 (2012).

    Google Scholar 

  • Akinsanya, B., Ayanda, I. O., Fadipe, A. O., Onwuka, B. & Saliu, J. K. Heavy metals, parasitologic and oxidative stress biomarker investigations in Heterotis niloticus from Lekki Lagoon, Lagos, Nigeria. Toxicol. Rep. 7, 1075–1082 (2020).

    CAS 
    Article 

    Google Scholar 

  • Akinsanya, B., Ayanda, I. O., Onwuka, B. & Saliu, J. K. Bioaccumulation of BTEX and PAHs in Heterotis niloticus (Actinopterygii) from the Epe Lagoon, Lagos, Nigeria. Heliyon 6, e03272. https://doi.org/10.1016/j.heliyon.2020.e03272 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans