in

Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects

  • Gandhi, K. J. K. & Herms, D. A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 12, 389–405 (2010).

    Google Scholar 

  • Desurmont, G. A. et al. Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant. Cell Environ. 37, 1854–1865 (2014).

    PubMed 

    Google Scholar 

  • Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).

    Google Scholar 

  • Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113, 7575–7579 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).

    Google Scholar 

  • Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).

    PubMed 

    Google Scholar 

  • Sherpa, S. et al. Landscape does matter: Disentangling founder effects from natural and human-aided post-introduction dispersal during an ongoing biological invasion. J. Anim. Ecol. 89, 2027–2042 (2020).

    PubMed 

    Google Scholar 

  • Sherpa, S. & Després, L. The evolutionary dynamics of biological invasions: A multi‐approach perspective. Evol. Appl. (2021).

  • North, H. L., McGaughran, A. & Jiggins, C. Insights into invasive species from whole-genome resequencing. Mol. Ecol. (2021).

  • Ma, L. et al. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Divers. Distrib. 26, 610–622 (2020).

    Google Scholar 

  • Ortego, J., Céspedes, V., Millán, A. & Green, A. J. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Mol. Ecol. 30, 4189–4203 (2021).

    PubMed 

    Google Scholar 

  • Varone, L., Logarzo, G., Briano, J., Hight, S. & Carpenter, J. Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina. Biol. Invasions 16, 2367–2380 (2014).

    Google Scholar 

  • Singer, M. C., Ng, D. & Moore, R. A. Genetic variation in oviposition preference between butterfly populations. J. Insect Behav. 4, 531–535 (1991).

    Google Scholar 

  • Forister, M. L. Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. Ecol. Entomol. 29, 264–272 (2004).

    Google Scholar 

  • Wiklund, C. The concept of oligophagy and the natural habitats and host plants of Papilio machaon L. Fennoscandia. Insect Syst. Evol. 5, 151–160 (1974).

    Google Scholar 

  • Courtney, S. P. & Forsberg, J. Host use by two pierid butterflies varies with host density. Funct. Ecol. 2, 67–75 (1988).

    Google Scholar 

  • Franklin, J. Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19, 1217–1223 (2013).

    Google Scholar 

  • Peterson, A. et al. Ecological niches and geographic distributions. Monographs in Population Biology vol. 49 (2011).

  • Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248 (2014).

    PubMed 

    Google Scholar 

  • Carrera-Martínez, R., Aponte-Díaz, L. A., Ruiz-Arocho, J., Lorenzo-Ramos, A. & Jenkins, D. A. The effects of the invasive Harrisia cactus mealybug (Hypogeococcus sp.) and exotic lianas (Jasminum fluminense) on Puerto Rican native cacti survival and reproduction. Biol. Invasions 21, 3269–3284 (2019).

    Google Scholar 

  • Acevedo-Rodríguez, P. & Strong, M. T. Catalogue of seed plants of the West Indies. Smithson. Contrib. to Bot. 98, 1–1192 (2012).

    Google Scholar 

  • Carrera-Martínez, R., Aponte-Díaz, L., Ruiz-Arocho, J. & Jenkins, D. A. Symptomatology of infestation by Hypogeococcus pungens: Contrasts between host species. Haseltonia 2015, 14–18 (2015).

    Google Scholar 

  • Aponte-Díaz, L., Ruiz-Arocho, J., Carrera-Martínez, R. & Ee, B. Contrasting effects of the invasive Hypogeococcus sp. (Hemiptera: Pseudococcidae) infestation on seed germination of Pilosocereus royenii (Cactaceae), a Puerto Rican native cactus. Caribb. J. Sci. 50, 212–218 (2020).

    Google Scholar 

  • California Department of Food and Agriculture. Harrisia Cactus Mealybug | Hypogeococcus pungens | Pest rating proposals and final ratings. https://blogs.cdfa.ca.gov/Section3162/?p=5881 (2018).

  • Poveda-Martínez, D. et al. Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecol. Evol. 10, 10463–10480 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Segarra-Carmona, A. E., Ramírez-Lluch, A., Cabrera-Asencio, I. & Jiménez-López, A. N. First report of a new invasive mealybug, the Harrisia cactus mealybug Hypogeococcus pungens (Hemiptera: Pseudococcidae). J. Agric. Univ. Puerto Rico 94, 183–187 (2010).

    Google Scholar 

  • Poveda-Martínez, D. et al. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE 14, e0220366 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenzie, H. L. Mealybugs of California. (Univ of California Press, 1967).

  • Hamon, A. B. A cactus mealybug, Hypogeococcus festerianus (Lizer y Trelles). Florida (Homoptera Coccoidea Pseudococcidae). Entomol. Circ. Div. Plant Ind. Florida Dep. Agric. Consum. Serv. 263, 2 (1984).

  • Hodges, A. & Hodges, G. Hypogeococcus pungens Granara de Willink (Insecta: Hemiptera: Pseudococcidae), a mealybug. EDIS 2009, (2009).

  • Halbert, S. Entomology section. Triology 35, 2–4 (1996).

    Google Scholar 

  • Aguirre, M. B. et al. Analysis of biological traits of Anagyrus cachamai and Anagyrus lapachosus to assess their potential as biological control candidate agents against Harrisia cactus mealybug pest in Puerto Rico. Biocontrol 64, 539–551 (2019).

    CAS 

    Google Scholar 

  • Aguirre, M. B. et al. Influence of competition and intraguild predation between two candidate biocontrol parasitoids on their potential impact against Harrisia cactus mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). Sci. Rep. 11, 13377 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Poveda-Martínez, D., Salinas, N., Aguirre, M. B., Sánchez-Restrepo, A. F. & Hight, S., Diaz-Soltero, H. Dataset generated in Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects. https://doi.org/10.6084/m9.figshare.15167082.v2 (2022).

  • Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: Lessons from human bottlenecks. Heredity (Edinb). 110, 409–419 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Born‐Schmidt, G. et al. The implementation of the mexican strategy on invasive species: How far have we come? Invasive Alien Species Obs. Issues from Around World 4, 153–164 (2021).

    Google Scholar 

  • McFadyen, R. E. & Tomley, A. J. Preliminary indications of success in the biological control of Harrisia cactus (Eriocereus martinii Lab.) in Queensland. In Proceedings of the First Conference of the Council of Australian Weed Science Societies held at National Science Centre, Parkville, Victoria, Australia, 12–14 April 1978 108–112 (Council of Australian Weed Science Societies, 1978).

  • McFadyen, R. E. & Tomley, A. J. The successful biological control of Harrisia cactus (Eriocereus martinii) in Queensland. In Proceedings of the Sixth Australian Weeds Conference, Volume 1, City of Gold Coast, Queensland, Australia, 13–18 September, 1981 139–143 (Queensland Weed Society, 1981).

  • Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 19, 230–246 (2011).

    Google Scholar 

  • Sutton, G. F., Klein, H. & Paterson, I. D. Evaluating the efficacy of Hypogeococcus sp. as a biological control agent of the cactaceous weed Cereus jamacaru in South Africa. Biocontrol 63, 493–503 (2018).

    Google Scholar 

  • Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 29, 713–734 (2021).

    Google Scholar 

  • McFadyen, R. E. Harrisia (Eriocereus) martinii (Labour.) Britton—Harrisia cactus Acanthocereus tetragonus (L.) Hummelink—sword pear. (ed. Julien, M., McFadyen, R., & Cullen, J.), Biological control of weeds in Australia 274– 281. (CSIRO Publishing, 2012).

  • Julien, M. H. & Griffiths, M. Biological control of weeds: A world catalogue of agents and their target weeds. (Cab International, 1998).

  • Houston, W. A. & Elder, R. Biocontrol of Harrisia cactus Harrisia martinii by the mealybug Hypogeococcus festerianus (Hemiptera: Pseudococcidae) in salt-influenced habitats in Australia. Austral Entomol. 58, 696–703 (2019).

    Google Scholar 

  • Hofmeister, N., Werner, S. & Lovette, I. Environmental correlates of genetic variation in the invasive European starling in North America. Mol. Ecol. 30, 1251–1263 (2021).

    PubMed 

    Google Scholar 

  • Driscoe, A. L. et al. Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Mol. Ecol. 28, 4197–4211 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Vidal, M. C., Quinn, T. W., Stireman, J. O. 3rd., Tinghitella, R. M. & Murphy, S. M. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol. Ecol. 28, 4317–4334 (2019).

    PubMed 

    Google Scholar 

  • Poveda-Martínez, D. et al. Spatial and host related genomic variation in partially sympatric cactophagous moth species. Mol. Ecol. 31, 356–371 (2021).

    PubMed 

    Google Scholar 

  • Cao, L., Wei, S., Hoffmann, A. A., Wen, J. & Chen, M. Rapid genetic structuring of populations of the invasive fall webworm in relation to spatial expansion and control campaigns. Divers. Distrib. 22, 1276–1287 (2016).

    Google Scholar 

  • Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).

    Google Scholar 

  • Yang, Q.-Q. et al. Introgressive hybridization between two non-native apple snails in China: Widespread hybridization and homogenization in egg morphology. Pest Manag. Sci. 76, 4231–4239 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cordeiro, E. M. G. et al. Hybridization and introgression between Helicoverpa armigera and H zea: An adaptational bridge. BMC Evol. Biol. 20, 61 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardo-Diaz, C. et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLOS Genet. 8, e1002752 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).

    Google Scholar 

  • Goldson, S. L., Phillips, C. B. & Barlow, N. D. The value of parasitoids in biological control. New Zeal. J. Zool. 21, 91–96 (1994).

    Google Scholar 

  • Wang, Z., Liu, Y., Shi, M., Huang, J. & Chen, X. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18, 705–715 (2019).

    Google Scholar 

  • Miller, G., & Lugo. A. E. Guide to the ecological systems of Puerto Rico. IITF-GTR-35 (2009).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, S. FastQC: A Quality control tool for high throughput sequence data. (2010).

  • Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Google Scholar 

  • Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Google Scholar 

  • Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  • Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. St AMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Cockerham, C. C. Drift and mutation with a finite number of allelic states. Proc. Natl. Acad. Sci. 81, 530–534 (1984).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196, 313–320 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).

  • Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manage. 38, 541–545 (1974).

    Google Scholar 

  • Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Informatics 2, 1-10 (2005).

  • Jorge, S. & Miguel, N. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650 (2009).

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Google Scholar 

  • Cobos, M. E., Peterson, A., Barve, N. & Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • Title, P. O. & Bemmels, J. B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography (Cop.) 41, 291–307 (2018).

    Google Scholar 

  • Warren, B. H. et al. Evaluating alternative explanations for an association of extinction risk and evolutionary uniqueness in multiple insular lineages. Evolution 72, 2005–2024 (2018).

    PubMed 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62, 2868–2883 (2008).

    Google Scholar 

  • Schoener, T. W. The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).

    Google Scholar 

  • Van der Vaart, A. W. Asymptotic Statistics (UK Cam, 1998).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19