in

Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams

  • Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. in Global Change and River Ecosystems—Implications for Structure, Function and EcosystemServices (eds. Stevenson, R. J. & Sabater, S.) 107–121 (Springer Netherlands, 2010).

  • Battin, T. J., Wille, A., Psenner, R. & Richter, A. Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1, 159–171 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuhn, M. The nutrient cycle through snow and ice, a review. Aquat. Sci. 63, 150–167 (2001).

    CAS 
    Article 

    Google Scholar 

  • Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. U. S. A. 114, 9770–9778 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tockner, K., Malard, F., Uehlinger, U. & Ward, J. V. Nutrients and organic matter in a glacial river-floodplain system (Val Roseg, Switzerland). Limnol. Oceanogr. 47, 266–277 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Boix Canadell, M. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).

    Article 

    Google Scholar 

  • Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2017).

    Article 

    Google Scholar 

  • Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 8, 135–140 (2018).

    ADS 
    Article 

    Google Scholar 

  • Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Roncoroni, M., Brandani, J., Battin, T. I. & Lane, S. N. Ecosystem engineers: biofilms and the ontogeny of glacier floodplain ecosystems. WIREs Water 6, e1390 (2019).

    Article 

    Google Scholar 

  • Hoyle, J. T., Kilroy, C., Hicks, D. M. & Brown, L. The influence of sediment mobility and channel geomorphology on periphyton abundance. Freshw. Biol. 62, 258–273 (2017).

    Article 

    Google Scholar 

  • Canadell, M. B. et al. Regimes of primary production and their drivers in Alpine streams. Freshwater Biol. https://doi.org/10.1111/fwb.13730 (2021).

  • Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. Bioscience 67, 897–911 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13, 291–314 (1982).

    Article 

    Google Scholar 

  • Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

  • Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • Haack, T. K. & McFeters, G. A. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8, 115–126 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kaplan, L. A. & Bott, T. L. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34, 718–733 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vincent, W. F., Downes, M. T., Castenholz, R. W. & Howard-Williams, C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur. J. Phycol. 28, 213–221 (1993).

    Article 

    Google Scholar 

  • Tolotti, M. et al. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future. Sci. Total Environ. 717, 137101 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Risse‐Buhl, U. et al. Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms. Limnol. Oceanogr. 65, 2261–2277 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Palmer, M. A., Swan, C. M., Nelson, K., Silver, P. & Alvestad, R. Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landsc. Ecol. 15, 563–576 (2000).

    Article 

    Google Scholar 

  • Battin, T. J. et al. Microbial landscapes: new paths to biofilm research. Nat. Rev. Microbiol. 5, 76–81 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dzubakova, K. et al. Environmental heterogeneity promotes spatial resilience of phototrophic biofilms in streambeds. Biol. Lett. 14, 20180432 (2018).

  • Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol 1, 16048 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chaudhari, N. M., Overholt, W. A. & Figueroa-Gonzalez, P. A. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. bioRxiv. 16, 1–8 (2021).

  • Vigneron, A. et al. Ultra‐small and abundant: candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol. Oceanogr. Lett. 5, 212–220 (2020).

    Article 

    Google Scholar 

  • Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cai, M. et al. Ecological features and global distribution of Asgard archaea. Sci. Total Environ. 758, 143581 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Niedrist, G. H. & Füreder, L. When the going gets tough, the tough get going: The enigma of survival strategies in harsh glacial stream environments. Freshw. Biol. 63, 1260–1272 (2018).

    Article 

    Google Scholar 

  • Payne, A. T. et al. Widespread cryptic viral infections in lotic biofilms. Biofilms 2, 100016 (2020).

    Article 

    Google Scholar 

  • Anesio, A. M., Mindl, B., Laybourn-Parry, J., Hodson, A. J. & Sattler, B. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 112, (2007).

  • Bellas, C. M., Schroeder, D. C., Edwards, A., Barker, G. & Anesio, A. M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11, 4403 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Q. et al. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME J. 15, 1844–1857 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sánchez Barranco, V. et al. Trophic position, elemental ratios and nitrogen transfer in a planktonic host-parasite-consumer food chain including a fungal parasite. Oecologia 194, 541–554 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klawonn, I. et al. Characterizing the ‘fungal shunt’: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

  • Chróst, R. J. Microbial Enzymes in Aquatic Environments. (Springer-Verlag, 1991).

  • Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: a pan-arctic review. Front. Mar. Sci. 5, 292 (2018).

  • Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 45 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avcı, B., Krüger, K., Fuchs, B. M., Teeling, H. & Amann, R. I. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 14, 1369–1383 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol 5, 1026–1039 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhou, J., Lyu, Y., Richlen, M., Anderson, D. M. & Cai, Z. Quorum sensing is a language of chemical signals and plays an ecological role in algal–bacterial interactions. CRC Crit. Rev. Plant Sci. 35, 81–105 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grossman, A. Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae. Curr. Biol.: CB vol. 26, R319–R321 (2016).

    CAS 
    Article 

    Google Scholar 

  • Segev, E. et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife 5, e17473 (2016).

  • Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fellman, J. B. et al. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnol. Oceanogr. 60, 1118–1128 (2015).

    ADS 
    Article 

    Google Scholar 

  • Singer, G. A. et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shift in dissolved organic carbon export from quasi‐chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3, 10 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tranter, M., Mills, R. & Raiswell, R. Chemical weathering reactions in Alpine glacial meltwaters. in International symposium on water-rock interaction. 687–690 (1989).

  • Tranter, M., Brown, G., Raiswell, R., Sharp, M. & Gurnell, A. A conceptual model of solute acquisition by Alpine glacial meltwaters. J. Glaciol. 39, 573–581 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • St Pierre, K. A. et al. Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2. Proc. Natl Acad. Sci. U. S. A. 116, 17690–17695 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Dunham, E. C., Dore, J. E., Skidmore, M. L., Roden, E. E. & Boyd, E. S. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

  • Hernández, M. et al. Reconstructing genomes of carbon monoxide oxidisers in volcanic deposits including members of the Class Ktedonobacteria. Microorganisms 8, 1880 (2020).

  • Quick, A. M. et al. Nitrous oxide from streams and rivers: a review of primary biogeochemical pathways and environmental variables. Earth-Sci. Rev. 191, 224–262 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gooseff, M. N., McKnight, D. M., Runkel, R. L. & Duff, J. H. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 49, 1884–1895 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 55, 1901–1911 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kohler, T. J. et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alves, R. J. E. et al. Ammonia oxidation by the Arctic terrestrial thaumarchaeote candidatus nitrosocosmicus arcticus is stimulated by increasing temperatures. Front. Microbiol. 10, 1571 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Könneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl Acad. Sci. U. S. A. 111, 8239–8244 (2014).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Battin, T. J., Kaplan, L. A., Denis Newbold, J. & Hansen, C. M. E. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cockell, C. S. et al. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. J. Photochem. Photobiol. B 68, 23–32 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sommaruga, R. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B 62, 35–42 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Maayer, P., Anderson, D., Cary, C. & Cowan, D. A. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15, 508–517 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tribelli, P. M. & López, N. I. Reporting key features in cold-adapted bacteria. Life 8, 8 (2018).

  • Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549–559 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alonso-Sáez, L. et al. Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front. Microbiol. 5, 425 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hornung, C. et al. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 8, e55045 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maillot, N. J., Honoré, F. A., Byrne, D., Méjean, V. & Genest, O. Cold adaptation in the environmental bacterium Shewanella oneidensis is controlled by a J-domain co-chaperone protein network. Commun. Biol. 2, 323 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konings, W. N., Albers, S.-V., Koning, S. & Driessen, A. J. M. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van. Leeuwenhoek 81, 61–72 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Methé, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. U. S. A. 102, 10913–10918 (2005).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayala-del-Río, H. L. et al. The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl. Environ. Microbiol. 76, 2304–2312 (2010).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mykytczuk, N. C. S. et al. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ting, L. et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ. Microbiol 12, 2658–2676 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Tribelli, P. M. et al. Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 10, e0145353 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blagojevic, D. P., Grubor-Lajsic, G. N. & Spasic, M. B. Cold defence responses: the role of oxidative stress. Front. Biosci. 3, 416–427 (2011).

    Article 

    Google Scholar 

  • Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. https://doi.org/10.1038/s41396-021-01106-6 (2021).

  • Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Vegetation Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gautreau, I. E7805 NEBNext® UltraTM II FS DNA Library Prep Kit for Illumina® Protocol for use with Inputs ≤ 100 ng. https://www.protocols.io/view/e7805-nebnext-ultra-ii-fs-dna-library-prep-kit-for-k8tczwn (2020).

  • Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol 2, 16180 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. bioRxiv 2021.12.22.473795 https://doi.org/10.1101/2021.12.22.473795. (2021).

  • Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol 3, 836–843 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz848 (2019).

  • Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zablocki, O., Jang, H. B., Bolduc, B. & Sullivan, M. B. vConTACT 2: A tool to automate genome-based prokaryotic viral taxonomy. in Plant and Animal Genome XXVII Conference (January 12-16, 2019) (PAG, 2019).

  • Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Krinos, A. I., Hu, S. K., Cohen, N. R. & Alexander, H. EUKulele: Taxonomic annotation of the unsung eukaryotic microbes. arXiv [q-bio.PE] (2020).

  • Queirós, P., Delogu, F., Hickl, O., May, P. & Wilmes, P. Mantis: flexible and consensus-driven genome annotation. bioRxiv (2020).

  • Zhou, Z. et al. METABOLIC: High-throughput profiling of microbial genomes for functional traits, biogeochemistry, and community-scale metabolic networks. bioRxiv 761643. https://doi.org/10.1101/761643 (2020).

  • McDaniel, E. A., Anantharaman, K. & McMahon, K. D. metabolisHMM: Phylogenomic analysis for exploration of microbial phylogenies and metabolic pathways. bioRxiv 2019.12.20.884627. https://doi.org/10.1101/2019.12.20.884627 (2019).

  • Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. https://www.osti.gov/biblio/1241166 (2014).

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alneberg, J. et al. CONCOCT: Clustering cONtigs on COverage and ComposiTion. arXiv [q-bio.GN] (2013).

  • Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Inferring Correlation Networks from Genomic Survey Data. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002687.

  • Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex. Syst. 1695, 1–9 (2006).

    Google Scholar 

  • Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article 

    Google Scholar 

  • Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61–D65 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).

    Article 
    CAS 

    Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tange, O. GNU Parallel 2018. (Lulu.com, 2018).

  • Team, R. C. & Others. R: A language and environment for statistical computing. (2013).

  • Kahle, D. & Wickham, H. Ggmap: spatial visualization with ggplot2. R. J. 5, 144 (2013).

    Article 

    Google Scholar 

  • Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

  • kevinblighe/EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano.

  • Wickham, H. ggplot2: ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    MATH 
    Article 

    Google Scholar 

  • Bah, T. Inkscape: guide to a vector drawing program. (Prentice Hall Press, 2007).

  • Varrette, S., Bouvry, P., Cartiaux, H. & Georgatos, F. Management of an academic HPC cluster: The UL experience. In 2014 International Conference on High Performance Computing Simulation (HPCS) 959–967 (2014).


  • Source: Ecology - nature.com

    Empowering people to adapt on the frontlines of climate change

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award