in

Genomic basis for early-life mortality in sharpsnout seabream

[adace-ad id="91168"]
  • Sale, P. F. & Steneck, R. S. Critical Science Gaps Impede Use of No-take Fishery Reserves (University of Maine/University of New Hampshire Sea Grant College Program, 2005).

    Book 

    Google Scholar 

  • Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer, 2013).

    Google Scholar 

  • Hamilton, S. L., Regetz, J. & Warner, R. R. Postsettlement survival linked to larval life in a marine fish. Proc. Natl. Acad. Sci. 105, 1561–1566 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).

    ADS 
    Article 

    Google Scholar 

  • Johnson, D. W., Christie, M. R., Stallings, C. D., Pusack, T. J. & Hixon, M. A. Using post-settlement demography to estimate larval survivorship: A coral reef fish example. Oecologia 179, 729–739 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shima, J. S. et al. Reproductive phenology across the lunar cycle: Parental decisions, offspring responses, and consequences for reef fish. Ecology 101, e03086 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Pini, J., Planes, S., Rochel, E., Lecchini, D. & Fauvelot, C. Genetic diversity loss associated to high mortality and environmental stress during the recruitment stage of a coral reef fish. Coral Reefs 30, 399–404 (2011).

    ADS 
    Article 

    Google Scholar 

  • Bourret, V., Dionne, M. & Bernatchez, L. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: Polygenic multilocus analysis surpasses genome scan. Mol. Ecol. 23, 4444–4457 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Planes, S. & Lenfant, P. Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol. Ecol. 11, 1515–1524 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Planes, S. & Romans, P. Evidence of genetic selection for growth in new recruits of a marine fish. Mol. Ecol. 13, 2049–2060 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davidson, W. S. Adaptation genomics: Next generation sequencing reveals a shared haplotype for rapid early development in geographically and genetically distant populations of rainbow trout. Mol. Ecol. 21, 219–222 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carreras, C. et al. East is east and west is west: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).

    Article 

    Google Scholar 

  • Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Babbucci, M. et al. An integrated genomic approach for the study of mandibular prognathism in the European seabass (Dicentrarchus labrax). Sci. Rep. 6, 38673 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barbanti, A. et al. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol. Ecol. Resour. 20, 795–806 (2020).

    CAS 
    Article 

    Google Scholar 

  • Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).

    Article 

    Google Scholar 

  • Torrado, H. et al. Impact of individual early life traits in larval dispersal: A multispecies approach using backtracking models. Prog. Oceanogr. 192, 102518 (2021).

    Article 

    Google Scholar 

  • Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hixon, M. A. & Carr, M. H. Synergistic predation, density dependence, and population regulation in marine fish. Science 277, 946–949 (1997).

    CAS 
    Article 

    Google Scholar 

  • Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).

    ADS 
    Article 

    Google Scholar 

  • Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).

    Article 

    Google Scholar 

  • Eckert, G. J. Estimates of adult and juvenile mortality for labrid fishes at One Tree Reef, Great Barrier Reef. Mar. Biol. 95, 167–171 (1987).

    Article 

    Google Scholar 

  • Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schunter, C. et al. Matching genetics with oceanography: Directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ciotti, B. J. & Planes, S. Within-generation consequences of postsettlement mortality for trait composition in wild populations: An experimental test. Ecol. Evol. 9, 2550–2561 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoklavich, M. M. & Bailey, K. M. Hatching period, growth and survival of young walleye pollock Theragra chalcogramma as determined from otolith analysis. Mar. Ecol. Prog. Ser. 64, 13–23 (1990).

    ADS 
    Article 

    Google Scholar 

  • Cargnelli, L. M. & Gross, M. R. The temporal dimension in fish recruitment: Birth date, body size, and size-dependent survival in a sunfish (bluegill: Lepomis macrochirus). Can. J. Fish. Aquat. Sci. 53, 360–367 (1996).

    Article 

    Google Scholar 

  • Moginie, B. F. & Shima, J. S. Hatch date and growth rate drives reproductive success in nest-guarding males of a temperate reef fish. Mar. Ecol. Prog. Ser. 592, 197–206 (2018).

    ADS 
    Article 

    Google Scholar 

  • Sponaugle, S., Boulay, J. N. & Rankin, T. L. Growth- and size-selective mortality in pelagic­larvae of a common reef fish. Aquat. Biol. 13, 263–273 (2011).

    Article 

    Google Scholar 

  • Biro, P. A., Abrahams, M. V., Post, J. R. & Parkinson, E. A. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J. Anim. Ecol. 75, 1165–1171 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Litvak, M. K. & Leggett, W. C. Age and size-selective predation on larval fishes: the bigger-is-better hypothesis revisited. Mar. Ecol. Prog. Ser. 81, 13–24 (1992).

    ADS 
    Article 

    Google Scholar 

  • D’Alessandro, E. K., Sponaugle, S. & Cowen, R. K. Selective mortality during the larval and juvenile stages of snappers (Lutjanidae) and great barracuda Sphyraena barracuda. Mar. Ecol. Prog. Ser. 474, 227–242 (2013).

    ADS 
    Article 

    Google Scholar 

  • Meekan, M. G. et al. Bigger is better: Size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Mar. Ecol. Progress Ser. 317, 237–244 (2006).

    ADS 
    Article 

    Google Scholar 

  • Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).

    ADS 
    Article 

    Google Scholar 

  • Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90, 1419–1432 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Logsdon, N. J., Deshpande, A., Harris, B. D., Rajashankar, K. R. & Walter, M. R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. 109, 12704–12709 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Macpherson, E., Gordoa, A. & Garcia-Rubies, A. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuarine Coast. Shelf Sci. 55, 777–788 (2002).

    ADS 
    Article 

    Google Scholar 

  • Garcia-Rubies, A. & Zabala I Limousin, M. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54(4), 317–328 (1990).

    Google Scholar 

  • Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 168, 45–56 (1998).

    ADS 
    Article 

    Google Scholar 

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Article 

    Google Scholar 

  • Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2. (2009). https://doi.org/10.1007/978-0-387-98141-3.

  • Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Natsidis, P., Tsakogiannis, A., Pavlidis, P., Tsigenopoulos, C. S. & Manousaki, T. Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling. Commun. Biol. 2, 400 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Al-Shahrour, F. et al. FatiGO: A functional profiling tool for genomic data: Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 35, W91–W96 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Studying floods to better predict their dangers

    Marine heatwaves of different magnitudes have contrasting effects on herbivore behaviour