in

Marine heatwaves of different magnitudes have contrasting effects on herbivore behaviour

[adace-ad id="91168"]
  • Abram, P. K., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biol. Rev. 92, 1859–1876 (2017).

    Article 

    Google Scholar 

  • Horwitz, R. et al. Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc. Sci. Rep. 10, 5461 (2020).

    ADS 
    Article 

    Google Scholar 

  • Minuti, J. J., Byrne, M., Hemraj, D. A. & Russell, B. D. Capacity of an ecologically key urchin to recover from extreme events: Physiological impacts of heatwaves and the road to recovery. Sci. Total Environ. 785, 147281 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Article 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • Angilletta Jr., M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis. (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780198570875.001.1.

  • Mertens, N. L., Russell, B. D. & Connell, S. D. Escaping herbivory: Ocean warming as a refuge for primary producers where consumer metabolism and consumption cannot pursue. Oecologia 179, 1223–1229 (2015).

    ADS 
    Article 

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 
    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    ADS 
    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    Article 

    Google Scholar 

  • Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).

    Article 

    Google Scholar 

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Atkinson, J., King, N. G., Wilmes, S. B. & Moore, P. J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56, 1591–1600 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hemraj, D. A., Posnett, N. C., Minuti, J. J., Firth, L. B. & Russell, B. D. Survived but not safe: Marine heatwave hinders metabolism in two gastropod survivors. Mar. Environ. Res. 162, 105117 (2020).

    CAS 
    Article 

    Google Scholar 

  • Vinagre, C. et al. Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. Ecol. Indic. 62, 317–327 (2016).

    Article 

    Google Scholar 

  • Vinagre, C. et al. Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms. PLoS ONE 13, e0192700 (2018).

    Article 

    Google Scholar 

  • Falkenberg, L. J., Russell, B. D. & Connell, S. D. Future herbivory: The indirect effects of enriched CO2 may rival its direct effects. Mar. Ecol. Prog. Ser. 492, 85–95 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lorda, J., Hechinger, R. F., Cooper, S. D., Kuris, A. M. & Lafferty, K. D. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails. Ecosphere 7, e01262 (2016).

    Article 

    Google Scholar 

  • Falkenberg, L. J., Connell, S. D. & Russell, B. D. Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Mar. Ecol. Prog. Ser. 497, 87–92 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).

    Article 

    Google Scholar 

  • Brothers, C. J. & McClintock, J. B. The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle’s lantern reflex of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol. Ecol. 467, 33–38 (2015).

    Article 

    Google Scholar 

  • DeWhatley, M. C. & Alexander, J. E. Impacts of elevated water temperatures on righting behavior and survival of two freshwater caenogastropod snails. Mar. Freshw. Behav. Physiol. 51, 251–262 (2018).

    Article 

    Google Scholar 

  • Sokolova, I. M. & Pörtner, H.-O. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J. Exp. Biol. 206, 195–207 (2003).

    Article 

    Google Scholar 

  • Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).

    CAS 
    Article 

    Google Scholar 

  • Monaco, C. J., McQuaid, C. D. & Marshall, D. J. Decoupling of behavioural and physiological thermal performance curves in ectothermic animals: a critical adaptive trait. Oecologia 185, 583–593 (2017).

    ADS 
    Article 

    Google Scholar 

  • Anderson, K. M. & Falkenberg, L. J. Variation in thermal performance curves for oxygen consumption and loss of critical behaviors in co-occurring species indicate the potential for ecosystem stability under ocean warming. Mar. Environ. Res. 172, 105487 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lemmnitz, G., Schuppe, H. & Wolff, H. G. Neuromotor bases of the escape behaviour of Nassa Mutabilis. J. Exp. Biol. 143, 493–507 (1989).

    Article 

    Google Scholar 

  • Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922 (2012).

    Article 

    Google Scholar 

  • Britton, D. et al. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C. Agardh. Glob. Change Biol. 26, 3512–3524 (2020).

    ADS 
    Article 

    Google Scholar 

  • Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. 111, 5610–5615 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).

    ADS 
    Article 

    Google Scholar 

  • Nguyen, H. M. et al. Stress memory in seagrasses: First insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).

    Article 

    Google Scholar 

  • Xu, Y. et al. Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure. Mar. Pollut. Bull. 173, 112932 (2021).

    CAS 
    Article 

    Google Scholar 

  • Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienne Austria (2020).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-16. (2020).

  • Therneau, T. M. & Grambsch, P. M. The cox model. In Modeling Survival Data: Extending the Cox Model 39–77 (Springer, 2000).

  • Fox, J. & Weisburg, S. An R Companion to Applied Regression. (Sage, 2011).

  • Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.3. (2020).


  • Source: Ecology - nature.com

    Genomic basis for early-life mortality in sharpsnout seabream

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations