in

Global and regional health and food security under strict conservation scenarios

  • 1.

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Buchanan, G. M., Butchart, S. H. M., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).

    Article 

    Google Scholar 

  • 3.

    Butchart, S. H. M. et al. in Global Assessment Report of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T. M.) Ch. 3 (IPBES Secretariat, 2019); https://doi.org/10.5281/zenodo.3832053

  • 4.

    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. S. W. 58, 7–17 (2014).

    Google Scholar 

  • 6.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 

    Google Scholar 

  • 7.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).

    Article 

    Google Scholar 

  • 9.

    Kok, M. T. J. et al. Assessing ambitious nature conservation strategies within a 2 degree warmer and food-secure world. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.236489 (2020).

  • 10.

    Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).

    Article 

    Google Scholar 

  • 11.

    Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).

    Article 

    Google Scholar 

  • 12.

    Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat. 2, 1172–1195 (2020).

    Article 

    Google Scholar 

  • 13.

    Rabin, S. S. et al. Impacts of future agricultural change on ecosystem service indicators. Earth Syst. Dynam. 11, 357–376 (2019).

    Article 

    Google Scholar 

  • 14.

    Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).

    Article 

    Google Scholar 

  • 15.

    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article 

    Google Scholar 

  • 16.

    Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).

    Article 

    Google Scholar 

  • 17.

    Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwz136 (2019).

  • 18.

    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).

  • 19.

    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2015).

  • 21.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

  • 22.

    Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).

    Article 

    Google Scholar 

  • 23.

    Kashwan, P. V., Duffy, R., Massé, F., Asiyanbi, A. P. & Marijnen, E. From racialized neocolonial global conservation to an inclusive and regenerative conservation. Environ. Sci. Policy Sustain. Dev. 63, 4–19 (2021).

    Article 

    Google Scholar 

  • 24.

    The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).

  • 25.

    Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).

    Article 

    Google Scholar 

  • 26.

    Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2021).

  • 27.

    Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).

  • 28.

    Protected Planet Report 2020 (UNEP–WCMC and IUCN, 2021).

  • 29.

    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Dutta, A., Allan, J., Shimray, G., General, S. & Pact, A. I. P. RE: “A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate”. Sci. Adv. 6, eabb2824 (2020).

    Article 

    Google Scholar 

  • 31.

    Simmons, B. A., Nolte, C. & McGowan, J. Tough questions for the “30 × 30” conservation agenda. Front. Ecol. Environ. 19, 322–323 (2021).

    Article 

    Google Scholar 

  • 32.

    Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).

  • 33.

    The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019).

  • 34.

    The World Database of Key Biodiversity Areas (KBA Partnership, 2019); www.keybiodiversityareas.org

  • 35.

    Mogg, S., Fastre, C. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).

  • 36.

    Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).

  • 37.

    Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3 https://CRAN.R-project.org/package=prioritizr (2020).

  • 38.

    Hurtt, G., Chini, L., Frolking, S. & Sahajpal, R. Land-Use Harmonization (LUH2) (Global Ecology Laboratory, Univ. Maryland, 2017).

  • 39.

    Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed April 2019); www.protectedplanet.net

  • 40.

    Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).

  • 41.

    Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 84003 (2016).

  • 42.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article 

    Google Scholar 

  • 43.

    Engström, K. et al. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst. Dynam. 7, 893–915 (2016).

  • 44.

    Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 35, 138–147 (2015).

    Article 

    Google Scholar 

  • 45.

    Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).

    Article 

    Google Scholar 

  • 46.

    GBD Results Tool (IHME, 2020); http://ghdx.healthdata.org/gbd-results-tool

  • 47.

    KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium