Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
Google Scholar
Buchanan, G. M., Butchart, S. H. M., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).
Google Scholar
Butchart, S. H. M. et al. in Global Assessment Report of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T. M.) Ch. 3 (IPBES Secretariat, 2019); https://doi.org/10.5281/zenodo.3832053
Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).
Google Scholar
Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. S. W. 58, 7–17 (2014).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
Google Scholar
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
Google Scholar
Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).
Google Scholar
Kok, M. T. J. et al. Assessing ambitious nature conservation strategies within a 2 degree warmer and food-secure world. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.236489 (2020).
Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).
Google Scholar
Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).
Google Scholar
Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat. 2, 1172–1195 (2020).
Google Scholar
Rabin, S. S. et al. Impacts of future agricultural change on ecosystem service indicators. Earth Syst. Dynam. 11, 357–376 (2019).
Google Scholar
Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).
Google Scholar
Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).
Google Scholar
Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).
Google Scholar
Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwz136 (2019).
Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Google Scholar
O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2015).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).
Google Scholar
Kashwan, P. V., Duffy, R., Massé, F., Asiyanbi, A. P. & Marijnen, E. From racialized neocolonial global conservation to an inclusive and regenerative conservation. Environ. Sci. Policy Sustain. Dev. 63, 4–19 (2021).
Google Scholar
The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).
Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).
Google Scholar
Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2021).
Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).
Protected Planet Report 2020 (UNEP–WCMC and IUCN, 2021).
Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).
Google Scholar
Dutta, A., Allan, J., Shimray, G., General, S. & Pact, A. I. P. RE: “A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate”. Sci. Adv. 6, eabb2824 (2020).
Google Scholar
Simmons, B. A., Nolte, C. & McGowan, J. Tough questions for the “30 × 30” conservation agenda. Front. Ecol. Environ. 19, 322–323 (2021).
Google Scholar
Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).
The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019).
The World Database of Key Biodiversity Areas (KBA Partnership, 2019); www.keybiodiversityareas.org
Mogg, S., Fastre, C. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).
Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).
Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3 https://CRAN.R-project.org/package=prioritizr (2020).
Hurtt, G., Chini, L., Frolking, S. & Sahajpal, R. Land-Use Harmonization (LUH2) (Global Ecology Laboratory, Univ. Maryland, 2017).
Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed April 2019); www.protectedplanet.net
Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 84003 (2016).
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).
Google Scholar
Engström, K. et al. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst. Dynam. 7, 893–915 (2016).
Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 35, 138–147 (2015).
Google Scholar
Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).
Google Scholar
GBD Results Tool (IHME, 2020); http://ghdx.healthdata.org/gbd-results-tool
KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Source: Ecology - nature.com