Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
Google Scholar
Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).
Google Scholar
Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).
Google Scholar
Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).
Google Scholar
Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).
Google Scholar
Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).
Google Scholar
Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).
Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).
Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).
Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).
Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).
Google Scholar
Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).
Google Scholar
Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).
Google Scholar
Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).
Google Scholar
McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).
Google Scholar
Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).
Google Scholar
Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).
Google Scholar
Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).
Google Scholar
Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).
Google Scholar
Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).
Google Scholar
Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).
Google Scholar
García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).
Google Scholar
Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).
Google Scholar
Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).
Google Scholar
Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).
Google Scholar
Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).
Google Scholar
Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).
Google Scholar
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
Google Scholar
Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).
Google Scholar
Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).
Google Scholar
Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).
Google Scholar
Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).
Google Scholar
Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).
Google Scholar
Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).
Google Scholar
Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).
Google Scholar
Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).
Google Scholar
Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).
Google Scholar
Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).
Google Scholar
Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).
Google Scholar
Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).
Google Scholar
Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).
Google Scholar
Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).
Google Scholar
Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).
Google Scholar
James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).
Google Scholar
Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).
Google Scholar
Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).
Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).
Google Scholar
Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).
Google Scholar
Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).
Google Scholar
Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).
Google Scholar
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).
Google Scholar
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Google Scholar
Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).
Google Scholar
Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).
Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).
Google Scholar
Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
Google Scholar
Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).
Google Scholar
Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).
Google Scholar
Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).
Google Scholar
Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).
Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).
Google Scholar
Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).
Google Scholar
Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).
Google Scholar
Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).
Google Scholar
Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).
Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).
Google Scholar
Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).
Google Scholar
Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).
Google Scholar
Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).
Google Scholar
Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).
Google Scholar
Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).
Google Scholar
Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).
Google Scholar
Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).
Google Scholar
Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).
Google Scholar
Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).
Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).
Google Scholar
Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).
Google Scholar
Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).
Google Scholar
O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).
Google Scholar
Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).
Google Scholar
Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).
Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).
Google Scholar
Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).
Google Scholar
Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).
Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).
Google Scholar
Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).
Google Scholar
Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).
Google Scholar
Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).
Google Scholar
Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).
Google Scholar
Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).
Google Scholar
Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).
Google Scholar
Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).
Google Scholar
Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).
Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).
Google Scholar
Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).
Google Scholar
Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).
Google Scholar
Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).
Google Scholar
Sanchez, G. PLS Path Modeling with R, 235 (2013).
Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).
Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).
Google Scholar
Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).
Google Scholar
Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).
Google Scholar
Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).
Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).
Google Scholar
Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).
Google Scholar
Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).
Google Scholar
Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).
Google Scholar
Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).
Google Scholar
Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).
Google Scholar
Source: Ecology - nature.com