in

Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

  • Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).

    Article 

    Google Scholar 

  • Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).

    CAS 

    Google Scholar 

  • Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).

    CAS 
    Article 

    Google Scholar 

  • Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).

    Google Scholar 

  • Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).

    Google Scholar 

  • Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).

    Google Scholar 

  • Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).

  • Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).

    Article 

    Google Scholar 

  • Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).

    Article 

    Google Scholar 

  • McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).

    Article 

    Google Scholar 

  • Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).

    Article 

    Google Scholar 

  • Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).

    Article 

    Google Scholar 

  • Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).

    Article 

    Google Scholar 

  • Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).

    ADS 
    Article 

    Google Scholar 

  • Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).

    Article 

    Google Scholar 

  • Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).

    Article 

    Google Scholar 

  • García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).

    Article 

    Google Scholar 

  • Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).

    Article 

    Google Scholar 

  • Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).

    CAS 
    Article 

    Google Scholar 

  • Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).

    Article 

    Google Scholar 

  • Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).

    Article 

    Google Scholar 

  • Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).

    Article 

    Google Scholar 

  • Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).

    CAS 
    Article 

    Google Scholar 

  • Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).

    Article 

    Google Scholar 

  • Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).

    Article 

    Google Scholar 

  • Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).

    Article 

    Google Scholar 

  • Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).

    ADS 
    Article 

    Google Scholar 

  • Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).

    Article 

    Google Scholar 

  • Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).

    CAS 
    Article 

    Google Scholar 

  • Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).

    Google Scholar 

  • Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).

    CAS 
    Article 

    Google Scholar 

  • Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).

    CAS 
    Article 

    Google Scholar 

  • Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).

    Article 

    Google Scholar 

  • Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).

    Article 

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).

    Article 

    Google Scholar 

  • Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).

    Google Scholar 

  • Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).

    Article 

    Google Scholar 

  • Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).

    CAS 
    Article 

    Google Scholar 

  • Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).

    Article 

    Google Scholar 

  • Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).

    Article 

    Google Scholar 

  • Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).

    Google Scholar 

  • Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).

    Article 

    Google Scholar 

  • Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).

    Article 

    Google Scholar 

  • Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).

    Google Scholar 

  • Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).

    Article 

    Google Scholar 

  • Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).

    Article 

    Google Scholar 

  • Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).

    Article 

    Google Scholar 

  • Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).

    Article 

    Google Scholar 

  • Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).

    ADS 
    Article 

    Google Scholar 

  • Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).

    Article 

    Google Scholar 

  • Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).

    Article 

    Google Scholar 

  • Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).

    CAS 
    Article 

    Google Scholar 

  • Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).

  • Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).

    Article 

    Google Scholar 

  • Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).

    CAS 
    Article 

    Google Scholar 

  • O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).

    Article 

    Google Scholar 

  • Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).

    Article 

    Google Scholar 

  • Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).

    Google Scholar 

  • Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).

    Article 

    Google Scholar 

  • Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).

    Article 

    Google Scholar 

  • Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).

    Google Scholar 

  • Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).

    CAS 
    Article 

    Google Scholar 

  • Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).

    CAS 
    Article 

    Google Scholar 

  • Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).

    Article 

    Google Scholar 

  • Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).

    Article 

    Google Scholar 

  • Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).

    CAS 
    Article 

    Google Scholar 

  • Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).

    Article 

    Google Scholar 

  • Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).

    Article 

    Google Scholar 

  • Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).

    Google Scholar 

  • Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).

    Book 

    Google Scholar 

  • Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sanchez, G. PLS Path Modeling with R, 235 (2013).

  • Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).

  • Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).

    CAS 
    Article 

    Google Scholar 

  • Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).

    Chapter 

    Google Scholar 

  • Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).

    ADS 
    Article 

    Google Scholar 

  • Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).

    Google Scholar 

  • Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).

    Article 

    Google Scholar 

  • Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).

    ADS 
    Article 

    Google Scholar 

  • Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).

    Article 

    Google Scholar 

  • Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    MIT student club Engineers Without Borders works with local village in Tanzania