in

Global habitat suitability modeling reveals insufficient habitat protection for mangrove crabs

  • Valiela, I., Bowen, J. L. & York, J. K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).

    Article 

    Google Scholar 

  • Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V. & Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 3, 1. https://doi.org/10.3390/rs3050878 (2011).

    Article 

    Google Scholar 

  • Turschwell, M. P. et al. Multi-scale estimation of the effects of pressures and drivers on mangrove forest loss globally. Biol. Cons. 247, 108637. https://doi.org/10.1016/j.biocon.2020.108637 (2020).

    Article 

    Google Scholar 

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. (2005).

  • Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 89, 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007 (2008).

    Article 

    Google Scholar 

  • Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).

    Article 

    Google Scholar 

  • Friess, D. A. et al. The state of the world’s Mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115. https://doi.org/10.1146/annurev-environ-101718-033302 (2019).

    Article 

    Google Scholar 

  • Zeng, Y., Friess, D. A., Sarira, T. V., Siman, K. & Koh, L. P. Global potential and limits of mangrove blue carbon for climate change mitigation. Curr. Biol. 31, 1737-1743.e1733. https://doi.org/10.1016/j.cub.2021.01.070 (2021).

    Article 
    CAS 

    Google Scholar 

  • zu Ermgassen, P. S. E. et al. Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries. Estuar. Coast. Shelf Sci. 247, 106975. https://doi.org/10.1016/j.ecss.2020.106975 (2020).

    Article 

    Google Scholar 

  • Walters, A. D. et al. Do hotspots fall within protected areas? A geographic approach to planning analysis of regional freshwater biodiversity. Freshw. Biol. 64, 2046–2056. https://doi.org/10.1111/fwb.13394 (2019).

    Article 

    Google Scholar 

  • Blasco, F., Saenger, P. & Janodet, E. Mangroves as indicators of coastal change. CATENA 27, 167–178. https://doi.org/10.1016/0341-8162(96)00013-6 (1996).

    Article 

    Google Scholar 

  • Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 89, 237–250. https://doi.org/10.1016/j.aquabot.2007.12.009 (2008).

    Article 

    Google Scholar 

  • Hamilton, S. Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci. 89, 585–601 (2013).

    Article 

    Google Scholar 

  • Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563. https://doi.org/10.1038/nature15538 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Richards Daniel, R. & Friess Daniel, A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349. https://doi.org/10.1073/pnas.1510272113 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036 (2012).

    Article 
    CAS 

    Google Scholar 

  • Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2, e01211. https://doi.org/10.1002/ehs2.1211 (2016).

    Article 

    Google Scholar 

  • Van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K. C. & Koedam, N. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Chang. 12, 685–691. https://doi.org/10.1038/s41558-022-01391-9 (2022).

    Article 
    ADS 

    Google Scholar 

  • Alongi, D. M. The impact of climate change on Mangrove forests. Curr. Clim. Change Rep. 1, 30–39. https://doi.org/10.1007/s40641-015-0002-x (2015).

    Article 

    Google Scholar 

  • Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).

    Article 

    Google Scholar 

  • Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43. https://doi.org/10.1016/j.seares.2007.05.004 (2008).

    Article 
    ADS 

    Google Scholar 

  • Penha-Lopes, G. et al. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands?. Mar. Pollut. Bull. 58, 1694–1703. https://doi.org/10.1016/j.marpolbul.2009.06.015 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sharifian, S., Kamrani, E. & Saeedi, H. Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J. Therm. Biol 92, 102692. https://doi.org/10.1016/j.jtherbio.2020.102692 (2020).

    Article 
    CAS 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 

    Google Scholar 

  • Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).

    Article 

    Google Scholar 

  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189 (2013).

    Article 

    Google Scholar 

  • Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).

  • Luan, J., Zhang, C., Xu, B., Xue, Y. & Ren, Y. Modelling the spatial distribution of three Portunidae crabs in Haizhou Bay, China. PLoS ONE 13, e0207457. https://doi.org/10.1371/journal.pone.0207457 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kafash, A. et al. The Gray Toad-headed Agama, Phrynocephalus scutellatus, on the Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East 64, 47–54. https://doi.org/10.1080/09397140.2017.1401309 (2018).

    Article 

    Google Scholar 

  • Yousefi, M., Shabani, A. A. & Azarnivand, H. Reconstructing distribution of the Eastern Rock Nuthatch during the Last Glacial Maximum and Last Interglacial. Avian Biol. Res. 13, 3–9. https://doi.org/10.1177/1758155919874537 (2019).

    Article 

    Google Scholar 

  • De Rock, P. et al. Predicting large-scale habitat suitability for cetaceans off Namibia using MinxEnt. Mar. Ecol. Prog. Ser. 619, 149–167 (2019).

    Article 
    ADS 

    Google Scholar 

  • Saeedi, H., Basher, Z. & Costello, M. J. Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgol. Mar. Res. 70, 23. https://doi.org/10.1186/s10152-016-0477-4 (2016).

    Article 

    Google Scholar 

  • Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invas. 24, 3169–3187. https://doi.org/10.1007/s10530-022-02838-y (2022).

    Article 

    Google Scholar 

  • Moradmand, M. & Yousefi, M. Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic. Sci. Rep. 12, 4138. https://doi.org/10.1038/s41598-022-08145-9 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Compton, T. J., Leathwick, J. R. & Inglis, G. J. Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers. Distrib. 16, 243–255. https://doi.org/10.1111/j.1472-4642.2010.00644.x (2010).

    Article 

    Google Scholar 

  • Kafash, A., Ashrafi, S. & Yousefi, M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environ. Sci. Pollut. Res. 29, 25881–25891. https://doi.org/10.1007/s11356-021-17412-7 (2022).

    Article 

    Google Scholar 

  • Leathwick, J. et al. Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv. Lett. 1, 91–102. https://doi.org/10.1111/j.1755-263X.2008.00012.x (2008).

    Article 

    Google Scholar 

  • Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145. https://doi.org/10.1016/j.ocecoaman.2020.105145 (2020).

    Article 

    Google Scholar 

  • Khajoei Nasab, F., Mehrabian, A. & Mostafavi, H. Mapping the current and future distributions of Onosma species endemic to Iran. J. Arid Land 12, 1031–1045. https://doi.org/10.1007/s40333-020-0080-z (2020).

    Article 

    Google Scholar 

  • Allyn, A. J. et al. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS ONE 15, e0231595. https://doi.org/10.1371/journal.pone.0231595 (2020).

    Article 
    CAS 

    Google Scholar 

  • Makki, T., Mostafavi, H., Matkan, A. & Aghighi, H. Modelling Climate-Change Impact on the Spatial Distribution of Garra Rufa (Heckel, 1843) (Teleostei: Cyprinidae). Iran. J. Sci. Technol. Trans. A: Sci. 45, 795–804. https://doi.org/10.1007/s40995-021-01088-2 (2021).

    Article 

    Google Scholar 

  • Bolon, I. et al. What is the impact of snakebite envenoming on domestic animals? A nation-wide community-based study in Nepal and Cameroon. Toxicon: X 9–10, 100068. https://doi.org/10.1016/j.toxcx.2021.100068 (2021).

  • Sharma, A., Dubey, V. K., Johnson, J. A., Rawal, Y. K. & Sivakumar, K. Is there always space at the top? Ensemble modeling reveals climate-driven high-altitude squeeze for the vulnerable snow trout Schizothorax richardsonii in Himalaya. Ecol. Ind. 120, 106900. https://doi.org/10.1016/j.ecolind.2020.106900 (2021).

    Article 

    Google Scholar 

  • Yousefi, M., Naderloo, R. & Keikhosravi, A. Freshwater crabs of the Near East: Increased extinction risk from climate change and underrepresented within protected areas. Glob. Ecol. Conserv. 38, e02266. https://doi.org/10.1016/j.gecco.2022.e02266 (2022).

    Article 

    Google Scholar 

  • Sheykhi Ilanloo, S. et al. Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near Threatened avian scavenger. Avian Biol. Res. 14, 18–26. https://doi.org/10.1177/1758155920962750 (2020).

    Article 

    Google Scholar 

  • Naderloo, R. Grapsoid crabs (Decapoda: Brachyura: Thoracotremata) of the Persian Gulf and the Gulf of Oman. Zootaxa 3048(1), 1. https://doi.org/10.11646/zootaxa.3048.1.1 (2011).

    Article 

    Google Scholar 

  • Naderloo, R. Atlas of crabs of the Persian Gulf. (2017).

  • Innocenti, G., Schubart, C. D. & Fratini, S. Description of Metopograpsus cannicci, new species, a pseudocryptic crab species from East Africa and the Western Indian Ocean (Decapoda: Brachyura: Grapsidae). Raffles Bull. Zool. (RBZ) 68, 619–628 (2020).

    Google Scholar 

  • Hemmati, M. R., Shojaei, M. G., Taheri Mirghaed, A., Mashhadi Farahani, M. & Weigt, M. Food sources for camptandriid crabs in an arid mangrove ecosystem of the Persian Gulf: a stable isotope approach. Isotop. Environ. Health Stud. 57, 457–469. https://doi.org/10.1080/10256016.2021.1925665 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. https://doi.org/10.1038/nature09329 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226. https://doi.org/10.1016/j.jembe.2011.02.029 (2011).

    Article 

    Google Scholar 

  • Hall, S. & Thatje, S. Temperature-driven biogeography of the deep-sea family Lithodidae (Crustacea: Decapoda: Anomura) in the Southern Ocean. Polar Biol. 34, 363–370. https://doi.org/10.1007/s00300-010-0890-0 (2011).

    Article 

    Google Scholar 

  • Hannah, L. Climate Change Biology. Academic Press (2015).

  • Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16, e0260031. https://doi.org/10.1371/journal.pone.0260031 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403. https://doi.org/10.1134/S1995425519040127 (2019).

    Article 

    Google Scholar 

  • Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2011).

    Article 

    Google Scholar 

  • Worm, B. & Lotze, H. K. in Climate Change (Second Edition) (ed Trevor M. Letcher) 195–212 (Elsevier, 2016).

  • Ramírez, F., Afán, I., Davis, L. S. & Chiaradia, A. Climate impacts on global hot spots of marine biodiversity. Sci. Adv. 3, e1601198. https://doi.org/10.1126/sciadv.1601198 (2017).

    Article 
    ADS 

    Google Scholar 

  • Worm, B. et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    Article 
    ADS 

    Google Scholar 

  • Daru, B. H. & le Roux, P. C. Marine protected areas are insufficient to conserve global marine plant diversity. Glob. Ecol. Biogeogr. 25, 324–334. https://doi.org/10.1111/geb.12412 (2016).

    Article 

    Google Scholar 

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature https://doi.org/10.1038/s41586-021-03371-z (2021).

    Article 

    Google Scholar 

  • Embling, C. B. et al. Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biol. Cons. 143, 267–279. https://doi.org/10.1016/j.biocon.2009.09.005 (2010).

    Article 

    Google Scholar 

  • Magris, R. A. & Déstro, G. F. G. Predictive modeling of suitable habitats for threatened marine invertebrates and implications for conservation assessment in Brazil. Braz. J. Oceanogr. 58, 57–68 (2010).

    Article 

    Google Scholar 

  • Welch, H., Pressey, R. L. & Reside, A. E. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. J. Nat. Conserv. 41, 106–115. https://doi.org/10.1016/j.jnc.2017.12.003 (2018).

    Article 

    Google Scholar 

  • Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632–e3632. https://doi.org/10.7717/peerj.3632 (2017).

    Article 

    Google Scholar 

  • Ancillotto, L., Mori, E., Bosso, L., Agnelli, P. & Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—First confirmed record and potential distribution. Mamm. Biol. 96, 61–67. https://doi.org/10.1016/j.mambio.2019.03.014 (2019).

    Article 

    Google Scholar 

  • Imtiyaz, B. B., Sweta, P. D., Prakash, K. K. Threats to marine biodiversity. Mar. Biodivers.: Present Status Prospects (2011).

  • Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).

    Article 

    Google Scholar 

  • Fabri-Ruiz, S., Danis, B., David, B. & Saucède, T. Can we generate robust species distribution models at the scale of the Southern Ocean?. Divers. Distrib. 25, 21–37. https://doi.org/10.1111/ddi.12835 (2019).

    Article 

    Google Scholar 

  • Maxwell, D. L., Stelzenmüller, V., Eastwood, P. D. & Rogers, S. I. Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. J. Sea Res. 61, 258–267. https://doi.org/10.1016/j.seares.2008.11.008 (2009).

    Article 
    ADS 

    Google Scholar 

  • Marshall, C. E., Glegg, G. A. & Howell, K. L. Species distribution modelling to support marine conservation planning: The next steps. Mar. Policy 45, 330–332. https://doi.org/10.1016/j.marpol.2013.09.003 (2014).

    Article 

    Google Scholar 

  • GBIF. GBIF Occurrence Download https://doi.org/10.15468/dl.khpu28. GBIF (2021).

  • Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583. https://doi.org/10.1641/B570707 (2007).

    Article 

    Google Scholar 

  • Basher, Z., Bowden, D. A. & Costello, M. J. Global marine environment datasets (GMED). World Wide Web Electron. Publ. 14, 1 (2018).

    Google Scholar 

  • Barnes, D. Ecology of subtropical hermit crabs in SW Madagascar: short-range migrations. Mar. Biol. 142, 549–557. https://doi.org/10.1007/s00227-002-0968-5 (2003).

    Article 

    Google Scholar 

  • Naimullah, M. et al. Association of environmental factors in the Taiwan Strait with distributions and habitat characteristics of three swimming crabs. Remote Sens. 12, 1. https://doi.org/10.3390/rs12142231 (2020).

    Article 

    Google Scholar 

  • Malvé, M. E., Rivadeneira, M. M. & Gordillo, S. Northward range expansion of the European green crab <em>Carcinus maenas</em> in the SW Atlantic: a synthesis after ~20 years of invasion history. bioRxiv, 2020.2011.2004.368761, doi:https://doi.org/10.1101/2020.11.04.368761 (2020).

  • Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).

    Article 

    Google Scholar 

  • Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).

    Article 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing (2020).

  • Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49. https://doi.org/10.1017/S0376892997000088 (1997).

    Article 

    Google Scholar 

  • Swets John, A. Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615 (1988).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).

    Article 

    Google Scholar 

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.3–7 (2020).

  • UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM). UNEP-WCMC and IUCN (2021).


  • Source: Ecology - nature.com

    Billion-dollar NASA satellite will track Earth’s water

    Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum “Eremiobacterota”, is a metabolically versatile aerobic anoxygenic phototroph